File size: 10,534 Bytes
cb237e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
#!/usr/bin/env python3
"""
HarpoonNet Webcam Detection Script
Real-time drone detection using webcam feed
"""
import cv2
import torch
import numpy as np
import argparse
from pathlib import Path
from harpoon_modular import HarpoonNetModular
from PIL import Image
from torchvision import transforms
import time
class WebcamDetector:
def __init__(self, model_path, conf_thresh=0.6, nms_thresh=0.4, camera_id=0, flip_frame=True):
"""Initialize the webcam detector"""
self.model_path = model_path
self.conf_thresh = conf_thresh
self.nms_thresh = nms_thresh
self.flip_frame = flip_frame
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.debug_view = False # Toggle with 'd' key
self.last_time = None
# ImageNet normalization parameters (as float32)
self.normalize_mean = np.array([0.485, 0.456, 0.406], dtype=np.float32)
self.normalize_std = np.array([0.229, 0.224, 0.225], dtype=np.float32)
# Load model
print(f"π Loading model from {model_path}")
checkpoint = torch.load(model_path, map_location=self.device)
self.model = HarpoonNetModular(num_classes=1, num_anchors=3)
self.model.load_state_dict(checkpoint['model_state_dict'])
self.model.to(self.device)
self.model.eval()
print("β
Model loaded successfully")
# Initialize webcam
self.cap = cv2.VideoCapture(camera_id)
if not self.cap.isOpened():
raise RuntimeError(f"Failed to open camera {camera_id}")
# Get camera properties
self.frame_width = int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH))
self.frame_height = int(self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(f"πΉ Camera resolution: {self.frame_width}x{self.frame_height}")
print(f"π― Initial confidence threshold: {self.conf_thresh:.2f}")
def enhance_frame(self, frame):
"""Enhance frame for better detection"""
# Convert to LAB color space
lab = cv2.cvtColor(frame, cv2.COLOR_BGR2LAB)
l, a, b = cv2.split(lab)
# Apply CLAHE to L channel
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
cl = clahe.apply(l)
# Merge channels
limg = cv2.merge((cl,a,b))
# Convert back to BGR
enhanced = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)
# Increase contrast
alpha = 1.3 # Contrast control
beta = 10 # Brightness control
enhanced = cv2.convertScaleAbs(enhanced, alpha=alpha, beta=beta)
return enhanced
def preprocess_frame(self, frame):
"""Preprocess frame for model input"""
# Get original dimensions
orig_h, orig_w = frame.shape[:2]
# Calculate scaling to maintain aspect ratio
input_size = 320
scale = min(input_size / orig_w, input_size / orig_h)
new_w = int(orig_w * scale)
new_h = int(orig_h * scale)
# Resize maintaining aspect ratio
resized = cv2.resize(frame, (new_w, new_h))
# Create square canvas with padding
square = np.zeros((input_size, input_size, 3), dtype=np.uint8)
# Center the resized image in the square
x_offset = (input_size - new_w) // 2
y_offset = (input_size - new_h) // 2
square[y_offset:y_offset+new_h, x_offset:x_offset+new_w] = resized
# Convert to RGB
img = cv2.cvtColor(square, cv2.COLOR_BGR2RGB)
# Convert to PIL Image for transforms
img = Image.fromarray(img)
# Apply transforms
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Apply transform and add batch dimension
img = transform(img).unsqueeze(0)
return img, (scale, x_offset, y_offset)
def postprocess_detections(self, detections, preprocess_info, frame_shape):
"""Convert normalized coordinates back to original frame coordinates"""
scale, x_offset, y_offset = preprocess_info
orig_h, orig_w = frame_shape[:2]
processed_detections = []
for det in detections[0]['boxes']:
if len(det) == 4:
# Remove padding offset
x1 = (det[0] - x_offset) / scale
y1 = (det[1] - y_offset) / scale
x2 = (det[2] - x_offset) / scale
y2 = (det[3] - y_offset) / scale
# Clip to frame boundaries
x1 = np.clip(x1, 0, orig_w)
y1 = np.clip(y1, 0, orig_h)
x2 = np.clip(x2, 0, orig_w)
y2 = np.clip(y2, 0, orig_h)
# Only add if box has reasonable size
w = x2 - x1
h = y2 - y1
if w > 10 and h > 10 and w < orig_w * 0.9 and h < orig_h * 0.9:
processed_detections.append([int(x1), int(y1), int(x2), int(y2)])
return processed_detections
def process_frame(self, frame):
"""Process a single frame"""
# Preprocess
img, preprocess_info = self.preprocess_frame(frame)
img = img.to(self.device)
# Run inference
with torch.no_grad():
predictions = self.model(img)
detections = self.model.decode_predictions(predictions, confidence_threshold=self.conf_thresh)
# Postprocess
boxes = self.postprocess_detections(detections, preprocess_info, frame.shape)
# Draw detections
frame_with_boxes = frame.copy()
for box in boxes:
x1, y1, x2, y2 = box
cv2.rectangle(frame_with_boxes, (x1, y1), (x2, y2), (0, 255, 0), 2)
# Add confidence score if available
if len(detections[0]['scores']) > 0:
conf = detections[0]['scores'][0]
cv2.putText(frame_with_boxes, f"Drone: {conf:.2f}",
(x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# Add FPS and detection count
fps = 1.0 / (time.time() - self.last_time) if self.last_time else 0.0
self.last_time = time.time()
cv2.putText(frame_with_boxes, f"FPS: {fps:.1f} | Detected: {len(boxes)} | Conf: {self.conf_thresh:.2f}",
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
return frame_with_boxes
def draw_detections(self, frame, detections):
"""Draw detection boxes and labels on frame"""
for det in detections:
x1, y1, x2, y2 = det['box']
conf = det['confidence']
# Draw box
color = (0, int(255 * conf), 0) # Brighter green for higher confidence
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
# Draw label with confidence
label = f"Drone: {conf:.2f}"
cv2.putText(frame, label, (x1, y1-10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# Draw FPS and detection count
if hasattr(self, 'fps'):
cv2.putText(frame, f"FPS: {self.fps:.1f} | Detected: {len(detections)}",
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
# Draw debug info
if self.debug_view:
cv2.putText(frame, "Debug View: ON", (10, 60),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
cv2.putText(frame, f"Conf Thresh: {self.conf_thresh:.2f}", (10, 90),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
# Draw center crosshair
h, w = frame.shape[:2]
cv2.line(frame, (w//2, 0), (w//2, h), (0, 0, 255), 1)
cv2.line(frame, (0, h//2), (w, h//2), (0, 0, 255), 1)
return frame
def run(self):
"""Run webcam detection"""
print("π₯ Starting detection...")
print("Controls:")
print(" 'q': Quit")
print(" 'd': Toggle debug view")
print(" '+': Increase confidence threshold")
print(" '-': Decrease confidence threshold")
self.last_time = time.time()
while True:
ret, frame = self.cap.read()
if not ret:
break
# Process frame
frame_with_boxes = self.process_frame(frame)
# Show frame
cv2.imshow('HarpoonNet Detection', frame_with_boxes)
# Handle key presses
key = cv2.waitKey(1) & 0xFF
if key == ord('q'):
break
elif key == ord('d'):
self.debug_view = not self.debug_view
elif key == ord('+'):
self.conf_thresh = min(1.0, self.conf_thresh + 0.05)
print(f"Confidence threshold: {self.conf_thresh:.2f}")
elif key == ord('-'):
self.conf_thresh = max(0.05, self.conf_thresh - 0.05)
print(f"Confidence threshold: {self.conf_thresh:.2f}")
self.cap.release()
cv2.destroyAllWindows()
def main():
parser = argparse.ArgumentParser(description='HarpoonNet Webcam Detection')
parser.add_argument('--model', type=str, required=True,
help='Path to model checkpoint')
parser.add_argument('--conf', type=float, default=0.6,
help='Initial confidence threshold')
parser.add_argument('--nms', type=float, default=0.4,
help='NMS threshold')
parser.add_argument('--camera', type=int, default=0,
help='Camera device ID')
parser.add_argument('--no-flip', action='store_true',
help='Disable frame flipping')
args = parser.parse_args()
try:
detector = WebcamDetector(
model_path=args.model,
conf_thresh=args.conf,
nms_thresh=args.nms,
camera_id=args.camera,
flip_frame=not args.no_flip
)
detector.run()
except Exception as e:
print(f"β Error: {str(e)}")
return 1
return 0
if __name__ == '__main__':
exit(main()) |