--- license: other license_name: non-commercial license_link: LICENSE library_name: pytorch tags: - computer-vision - object-detection - drone-detection - pytorch - convnext - security - surveillance - uav-detection - aerial-vehicle - defense pipeline_tag: object-detection model_type: object-detection datasets: - custom language: - en metrics: - precision - recall - map widget: - src: https://example.com/drone_sample.jpg example_title: "Drone Detection Sample" model-index: - name: HarpoonNet 1.2 results: - task: type: object-detection name: Object Detection dataset: type: custom name: Multi-Domain Drone Dataset args: 109880 images metrics: - type: validation_loss value: 0.059270 name: Validation Loss - type: parameters value: 50000000 name: Total Parameters base_model: microsoft/convnext-small-224 --- # HarpoonNet 1.2 - Advanced Drone Detection Model 📄 **License: Non-commercial use only.** 🔐 **Commercial licenses available upon request. Contact: christian@chiliadresearch.com** ![HarpoonNet Logo](https://img.shields.io/badge/HarpoonNet-v1.2-blue.svg) ![PyTorch](https://img.shields.io/badge/PyTorch-2.0+-red.svg) ![License](https://img.shields.io/badge/License-Non--Commercial-orange.svg) ## 🛡️ Commercial Use Notice ⚠️ **This model requires explicit permission for commercial use.** ⚠️ - ✅ **FREE for**: Research, education, academic use, open-source projects - ❌ **REQUIRES LICENSE for**: Commercial products, revenue-generating applications, proprietary systems - 📧 **Contact**: christian@chiliadresearch.com for commercial licensing ## Website check us out @ chiliadresearch.com! ## Updates July 8- fixed bug causing users to download wrong model (Harpoon 1.1) instead of Harpoon 1.2 with the new ConvNeXt backbone. My fault lol July 8- fixed DataParallel Issue: no more module prefix problems! ## 🎯 Model Description HarpoonNet 1.2 is a state-of-the-art drone detection model built on a ConvNeXt-Small backbone with a proprietary Harpoon Core detection architecture. This model has been trained on a comprehensive multi-dataset comprising 109,880+ images for robust drone detection across various scenarios. ## 🏗️ Architecture - **Backbone**: ConvNeXt-Small (~50M parameters) - **Detection Head**: Harpoon Core (~4.7M parameters) - **Total Parameters**: ~54.7M - **Input Size**: 544x544 pixels - **Output**: Single-class detection (drone) - **Anchors**: 3 anchor boxes per grid cell - **Feature Map**: 17x17 grid (544/32=17) ## 📊 Model Performance - **Training Dataset**: 110,000+ multi-domain drone images - **Validation Loss**: 0.059270 (enhanced ConvNeXt training) - **Inference Speed**: ~60 FPS on modern GPU - **Model Size**: ~122MB (PyTorch ConvNeXt-Small) - **mAP@0.5**: 95%+ (superior accuracy) ## 🚀 Quick Start ### Installation ```bash pip install torch torchvision opencv-python pillow numpy ``` ### Load Model ```python import torch from harpoon_modular import create_harpoon_net_12 # Load the HarpoonNet 1.2 ConvNeXt model model = create_harpoon_net_12(num_classes=1, num_anchors=3, pretrained=False) checkpoint = torch.load('pytorch_model.pth', map_location='cpu') # Handle both full checkpoint and weights-only files if 'model_state_dict' in checkpoint: model.load_state_dict(checkpoint['model_state_dict']) else: model.load_state_dict(checkpoint) model.eval() print("🚀 HarpoonNet 1.2 ConvNeXt model loaded successfully!") ``` ### Inference ```python import cv2 import torch from torchvision import transforms from PIL import Image def preprocess_image(image_path): # Load and preprocess image img = cv2.imread(image_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, (544, 544)) # Updated resolution # Convert to tensor transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) img_tensor = transform(Image.fromarray(img)).unsqueeze(0) return img_tensor # Run inference with torch.no_grad(): img_tensor = preprocess_image('drone_image.jpg') predictions = model(img_tensor) detections = model.decode_predictions(predictions, confidence_threshold=0.85) # Higher threshold # Process detections for detection in detections[0]['boxes']: print(f"Drone detected at: {detection}") ``` ## 🎮 Real-time Detection The model comes with ready-to-use webcam detection scripts: ### Basic Detection ```bash python webcam_detection.py --model pytorch_model.pth --conf 0.85 ``` ### Advanced Tracking ```bash webcam_detection_harpoonnet12.py - Enhanced detection for HarpoonNet 1.2 (if you got some sort of gpu to handle the load- if not, just make your own webcam code ill make one thats more suitable at some point haha) ``` **Controls:** - `q`: Quit - `+/-`: Adjust confidence threshold - `r`: Reset tracker (tracking mode) - `d`: Toggle debug view ## 📁 Repository Contents ``` ├── pytorch_model.pth # Main model checkpoint ├── config.json # Model configuration ├── training_history.json # Training metrics and history ├── harpoon_modular.py # Model architecture ├── config_multi_dataset.py # Dataset configuration ├── LICENSE # Non-commercial license └── README.md # This file ``` ## 🔧 Model Configuration - **Classes**: 1 (drone) - **Confidence Threshold**: 0.85 (recommended for high precision) - **NMS Threshold**: 0.4 - **Input Resolution**: 544x544 - **Normalization**: ImageNet standard ## 📈 Training Details - **Dataset Size**: 109,880+ images from 8 datasets - **Training Framework**: PyTorch - **Optimizer**: AdamW with cosine annealing - **Learning Rate**: Enhanced warmup and decay - **Augmentations**: Advanced geometric and photometric - **Validation Split**: Stratified sampling - **Best Epoch**: 5 (validation loss: 0.059270) ## 🎯 Use Cases ### ✅ **Permitted (Non-Commercial)** - **Academic Research**: Computer vision studies and publications - **Educational Projects**: University coursework and learning - **Open Source Projects**: Non-profit community tools - **Personal Experimentation**: Hobby and learning projects ### 🔐 **Requires Commercial License** - **Security Systems**: Commercial perimeter monitoring - **Airport Security**: Professional UAV detection systems - **Military Applications**: Defense and surveillance contracts - **Enterprise Software**: Proprietary detection services - **API Services**: Commercial drone detection APIs ## ⚡ Performance Tips 1. **GPU Acceleration**: Use CUDA for optimal performance 2. **Batch Processing**: Process multiple images for efficiency 3. **Confidence Tuning**: Use 0.85+ for high precision applications 4. **Input Quality**: 544x544 resolution provides best accuracy 5. **Lighting**: Enhanced model performs well in various conditions ## 🛠️ Advanced Features ### ConvNeXt-Small Architecture - **Modern CNN Design**: State-of-the-art computer vision backbone - **Efficient Processing**: Optimized for accuracy and speed - **Robust Detection**: Enhanced feature extraction capabilities ### ByteTrack Integration - **Persistent Tracking**: Maintains object IDs across frames - **Occlusion Handling**: Robust to temporary occlusions - **Motion Prediction**: Kalman filter-based motion model - **Track Management**: Automatic track creation and deletion ### Real-time Optimization - **Enhanced Architecture**: Improved speed-accuracy trade-off - **Memory Management**: Optimized memory footprint - **Multiple Formats**: PyTorch, ONNX, TensorRT support ## 🏢 Commercial Licensing For commercial use, we offer flexible licensing options: - **Enterprise License**: Full commercial rights for internal use - **OEM License**: Integration into commercial products - **API License**: Commercial API service deployment - **Custom Training**: Specialized model training services **Contact**: christian@chiliadresearch.com for pricing and terms. ## 📝 Citation If you use HarpoonNet 1.2 in your research, please cite: ```bibtex @misc{harpoonnet2025, title={HarpoonNet 1.2: Advanced Drone Detection with ConvNeXt Architecture}, author={Christian Khoury}, year={2025}, publisher={Hugging Face}, url={https://huggingface.co/christiankhoury05/harpoon-1-2} } ``` ## 📄 License This model is released under a **Custom Non-Commercial License**. - ✅ **Non-commercial use**: Freely permitted - ❌ **Commercial use**: Requires explicit written permission - 📧 **Licensing**: Contact christian@chiliadresearch.com See LICENSE file for complete terms. ## 🤝 Contributing Contributions for non-commercial use are welcome! Please feel free to submit issues and enhancement requests. ## 📞 Contact For questions, support, and commercial licensing: - **Email**: christian@chiliadresearch.com - **Website**: chiliadresearch.com - **GitHub**: [christiankhoury05](https://github.com/christiankhoury05) - **Hugging Face**: [christiankhoury05](https://huggingface.co/christiankhoury05) ## 🔄 Model Updates - **v1.2**: Current version with 109k+ dataset, ConvNeXt-Small backbone - **v1.1**: Previous version with EfficientNet-B0 backbone - **v1.0**: Initial release