Commit
ยท
304fb94
1
Parent(s):
8f4a423
End of training
Browse files- README.md +19 -40
- generation_config.json +1 -1
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -11,48 +11,30 @@ model-index:
|
|
11 |
results: []
|
12 |
---
|
13 |
|
|
|
|
|
|
|
14 |
# mt5_small_bongsoo_en_ko
|
15 |
|
16 |
-
This model is a fine-tuned version of [chunwoolee0/mt5_small_bongsoo_en_ko](https://huggingface.co/
|
17 |
-
on the [bongsoo/news_talk_en_ko](https://huggingface.co/datasets/bongsoo/news_talk_en_ko) dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 2.
|
20 |
-
- Rouge1: 0.
|
21 |
-
- Rouge2: 0.
|
22 |
-
- Rougel: 0.
|
23 |
-
- Sacrebleu: 0.
|
24 |
-
|
25 |
-
See [translation_en_ko_mt5_small_bongsoo_news_talk.ipynb
|
26 |
-
](https://github.com/chunwoolee0/ko-nlp/blob/main/translation_en_ko_mt5_small_bongsoo_news_talk.ipynb)
|
27 |
|
28 |
## Model description
|
29 |
|
30 |
-
|
31 |
|
32 |
## Intended uses & limitations
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
## Usage
|
37 |
-
|
38 |
-
You can use this model directly with a pipeline for translation language modeling:
|
39 |
-
|
40 |
-
```python
|
41 |
-
>>> from transformers import pipeline
|
42 |
-
>>> translator = pipeline('translation', model='chunwoolee0/ke_t5_base_bongsoo_en_ko')
|
43 |
-
|
44 |
-
>>> translator("Let us go for a walk after lunch.")
|
45 |
-
[{'translation_text': '์๋น์ ์์์ ๋ฐค์ ๊ฐ๋ค.'}]
|
46 |
-
|
47 |
-
>>> translator("Skinner's reward is mostly eye-watering.")
|
48 |
-
[{'translation_text': '๋ฒค๋์ ์ ๋ฌผ์ ๋๋ฌด ๋ง์์ด ์ ๋ฆฐ๋ค.'}]
|
49 |
|
50 |
## Training and evaluation data
|
51 |
|
52 |
-
|
53 |
-
greate trouble in gpu usage. Therefore it should be reduced to 64 in order to succeed.
|
54 |
-
Another problem comes from the usual split of data into 80% for train and 20% for validation. By this, the evaluation
|
55 |
-
step takes too much time. Here 99% and 1% split is used without change in the evaluation.
|
56 |
|
57 |
## Training procedure
|
58 |
|
@@ -73,20 +55,17 @@ The following hyperparameters were used during training:
|
|
73 |
|
74 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Sacrebleu |
|
75 |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
|
76 |
-
| 3.
|
77 |
-
| 3.
|
78 |
-
| 3.
|
79 |
-
| 3.
|
80 |
-
| 3.
|
81 |
-
| 3.
|
82 |
|
83 |
-
The mT5 model of google cannot be used for Korean although it is trained over 101 languages. Finetuning
|
84 |
-
using very large data set by bongsoo/news_talk_en_ko still yield results of garbage. One should use other
|
85 |
-
models like the ke-t5 by KETI(ํ๊ตญ์ ์์ฐ๊ตฌ์).
|
86 |
|
87 |
### Framework versions
|
88 |
|
89 |
-
- Transformers 4.32.
|
90 |
- Pytorch 2.0.1+cu118
|
91 |
- Datasets 2.14.4
|
92 |
- Tokenizers 0.13.3
|
|
|
11 |
results: []
|
12 |
---
|
13 |
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
# mt5_small_bongsoo_en_ko
|
18 |
|
19 |
+
This model is a fine-tuned version of [chunwoolee0/mt5_small_bongsoo_en_ko](https://huggingface.co/chunwoolee0/mt5_small_bongsoo_en_ko) on the None dataset.
|
|
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 2.7805
|
22 |
+
- Rouge1: 0.1932
|
23 |
+
- Rouge2: 0.0394
|
24 |
+
- Rougel: 0.1895
|
25 |
+
- Sacrebleu: 0.4518
|
|
|
|
|
|
|
26 |
|
27 |
## Model description
|
28 |
|
29 |
+
More information needed
|
30 |
|
31 |
## Intended uses & limitations
|
32 |
|
33 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
## Training and evaluation data
|
36 |
|
37 |
+
More information needed
|
|
|
|
|
|
|
38 |
|
39 |
## Training procedure
|
40 |
|
|
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Sacrebleu |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
|
58 |
+
| 3.7067 | 0.16 | 500 | 2.8501 | 0.1852 | 0.0373 | 0.1814 | 0.4147 |
|
59 |
+
| 3.6609 | 0.32 | 1000 | 2.8230 | 0.1887 | 0.0383 | 0.1852 | 0.4362 |
|
60 |
+
| 3.6269 | 0.48 | 1500 | 2.8030 | 0.1911 | 0.0367 | 0.1874 | 0.4482 |
|
61 |
+
| 3.6052 | 0.65 | 2000 | 2.7882 | 0.1931 | 0.0383 | 0.1893 | 0.4458 |
|
62 |
+
| 3.5882 | 0.81 | 2500 | 2.7805 | 0.1932 | 0.0394 | 0.1895 | 0.4518 |
|
63 |
+
| 3.585 | 0.97 | 3000 | 2.7771 | 0.1925 | 0.0401 | 0.1886 | 0.4499 |
|
64 |
|
|
|
|
|
|
|
65 |
|
66 |
### Framework versions
|
67 |
|
68 |
+
- Transformers 4.32.1
|
69 |
- Pytorch 2.0.1+cu118
|
70 |
- Datasets 2.14.4
|
71 |
- Tokenizers 0.13.3
|
generation_config.json
CHANGED
@@ -2,5 +2,5 @@
|
|
2 |
"decoder_start_token_id": 0,
|
3 |
"eos_token_id": 1,
|
4 |
"pad_token_id": 0,
|
5 |
-
"transformers_version": "4.32.
|
6 |
}
|
|
|
2 |
"decoder_start_token_id": 0,
|
3 |
"eos_token_id": 1,
|
4 |
"pad_token_id": 0,
|
5 |
+
"transformers_version": "4.32.1"
|
6 |
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1200772613
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94260ecd072528727b62c781b2ddd568f52fe66f79a3d0772f9d0e063da18bf3
|
3 |
size 1200772613
|