--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: seqcls_mrpc_bert_base_uncased_model results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8014705882352942 - name: F1 type: f1 value: 0.8669950738916257 --- # seqcls_mrpc_bert_base_uncased_model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4621 - Accuracy: 0.8015 - F1: 0.8670 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 58 | 0.5442 | 0.7108 | 0.8228 | | No log | 2.0 | 116 | 0.5079 | 0.7745 | 0.8558 | | No log | 3.0 | 174 | 0.4621 | 0.8015 | 0.8670 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3