--- base_model: openai/whisper-small datasets: - fleurs license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: whisper-small-wolof results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: fleurs type: fleurs config: wo_sn split: test args: wo_sn metrics: - type: wer value: 0.9217902350813744 name: Wer --- # whisper-small-wolof This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 1.8726 - Wer: 0.9218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 4.5232 | 0.9790 | 35 | 3.5807 | 1.3809 | | 3.7127 | 1.9860 | 71 | 2.4567 | 1.1817 | | 2.2111 | 2.9371 | 105 | 1.8726 | 0.9218 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1