cjvt
/

dvres commited on
Commit
c0030c4
·
verified ·
1 Parent(s): 7144b02

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +249 -205
README.md CHANGED
@@ -1,249 +1,293 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- GaMS-9B after the second round of training - high quality Slovene corpora. The training was done using NeMo 2.0. To fill the batches, the EOS token was added.
9
 
10
- Starting model: GaMS-Beta/GaMS-Parallel-2.0
11
 
12
- ## Data
13
-
14
- | Corpus | Language | # Tokens | Percentage |
15
- | :----- | :------- | :------: | :--------: |
16
- | KAS | Slovene | 2.77 B | 20.34 % |
17
- | Metafida | Slovene | 4.66 B | 34.18 % |
18
- | Wikipedia-En | English | 5.45 B | 39.99 % |
19
- | Wikipedia-Sl | Slovene | 0.16 B | 1.19 % |
20
- | Wikipedia-Hr | Croatian | 0.15 B | 1.13 % |
21
- | Wikipedia-Bs | Bosnian | 0.07 B | 0.50 % |
22
- | Wikipedia-Sr-Latin | Serbian | 0.36 B | 2.68 % |
23
- | Total | | 13.62 B | |
24
-
25
- ## Slovenian-LLM-Eval results
26
-
27
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/652d40a78fa1fbb0aae165bb/YszAknPaoxiBR0c_7Gu3U.png)
28
-
29
- ## Slobench Results
30
-
31
- The reported results were obtained using guided decoding.
32
-
33
- ### 0-shot results
34
-
35
- | | Model | BoolQ_accuracy | MultiRC_exact_match | MultiRC_per_question_f1 | MultiRC_f1_over_all_answers | WSC_accuracy | COPA_accuracy | RTE_accuracy | CB_accuracy | CB_f1 | NLI_accuracy | NLI_precision_entailment | NLI_recall_entailment | NLI_f1_entailment | NLI_precision_neutral | NLI_recall_neutral | NLI_f1_neutral | NLI_precision_contradiction | NLI_recall_contradiction | NLI_f1_contradiction |
36
- |--:|:---------------------------------------|:------------------|:----------------------|:--------------------------|:------------------------------|:------------------|:------------------|:------------------|:------------------|:------------------|:------------------|:---------------------------|:------------------------|:--------------------|:------------------------|:---------------------|:------------------|:------------------------------|:---------------------------|:-----------------------|
37
- | 0 | /models/hf_models/GaMS-9B-Parallel-2.0 | 0.76 [0.74, 0.77] | 0.21 [0.19, 0.24] | 0.56 [0.54, 0.58] | 0.55 [0.53, 0.57] | 0.38 [0.28, 0.47] | 0.6 [0.5, 0.7] | 0.6 [0.54, 0.66] | 0.68 [0.55, 0.8] | 0.59 [0.39, 0.76] | 0.35 [0.31, 0.39] | 0.5 [0.23, 0.77] | 0.04 [0.02, 0.07] | 0.08 [0.03, 0.13] | 0.33 [0.29, 0.37] | 0.85 [0.79, 0.9] | 0.47 [0.42, 0.52] | 0.41 [0.31, 0.52] | 0.19 [0.13, 0.24] | 0.26 [0.18, 0.32] |
38
- | 1 | google/gemma-2-9b | 0.78 [0.77, 0.8] | 0.2 [0.18, 0.23] | 0.48 [0.45, 0.5] | 0.49 [0.48, 0.51] | 0.63 [0.54, 0.73] | 0.68 [0.59, 0.77] | 0.69 [0.63, 0.74] | 0.55 [0.42, 0.69] | 0.31 [0.22, 0.41] | 0.33 [0.29, 0.37] | 0.55 [0.25, 0.83] | 0.03 [0.01, 0.06] | 0.06 [0.02, 0.11] | 0.32 [0.28, 0.36] | 0.98 [0.95, 0.99] | 0.48 [0.44, 0.52] | 0.57 [0.14, 1.0] | 0.02 [0.01, 0.04] | 0.04 [0.01, 0.08] |
39
- | 2 | google/gemma-2-9b-it | 0.83 [0.82, 0.84] | 0.18 [0.16, 0.2] | 0.6 [0.58, 0.62] | 0.5 [0.49, 0.52] | 0.62 [0.52, 0.71] | 0.86 [0.79, 0.93] | 0.8 [0.75, 0.85] | 0.82 [0.72, 0.92] | 0.73 [0.58, 0.85] | 0.47 [0.43, 0.51] | 0.48 [0.28, 0.68] | 0.06 [0.03, 0.1] | 0.11 [0.05, 0.17] | 0.4 [0.35, 0.46] | 0.66 [0.59, 0.74] | 0.5 [0.44, 0.56] | 0.55 [0.49, 0.62] | 0.72 [0.66, 0.78] | 0.62 [0.57, 0.68] |
40
- | 3 | zlatorog/Zlatorog_SFT_v2 | 0.82 [0.81, 0.84] | 0.35 [0.32, 0.38] | 0.72 [0.7, 0.74] | 0.71 [0.69, 0.72] | 0.65 [0.56, 0.75] | 0.79 [0.71, 0.87] | 0.79 [0.74, 0.84] | 0.77 [0.65, 0.88] | 0.63 [0.46, 0.82] | 0.63 [0.59, 0.67] | 0.54 [0.48, 0.59] | 0.93 [0.9, 0.96] | 0.68 [0.63, 0.73] | 0.8 [0.25, 1.0] | 0.02 [0.01, 0.05] | 0.04 [0.01, 0.1] | 0.79 [0.73, 0.84] | 0.9 [0.86, 0.94] | 0.84 [0.8, 0.88] |
41
- | 4 | cjvt/GaMS-1B | 0.52 [0.5, 0.54] | 0.01 [0.0, 0.01] | 0.05 [0.04, 0.05] | 0.04 [0.04, 0.05] | 0.61 [0.51, 0.7] | 0.55 [0.45, 0.65] | 0.48 [0.42, 0.54] | 0.21 [0.1, 0.33] | 0.19 [0.09, 0.27] | 0.33 [0.29, 0.36] | 0.34 [0.28, 0.4] | 0.43 [0.36, 0.5] | 0.38 [0.32, 0.44] | 0.33 [0.25, 0.41] | 0.26 [0.2, 0.33] | 0.29 [0.22, 0.35] | 0.3 [0.23, 0.37] | 0.28 [0.21, 0.34] | 0.29 [0.22, 0.35] |
42
- | 5 | cjvt/GaMS-1B-Chat | 0.62 [0.61, 0.64] | 0.03 [0.02, 0.04] | 0.13 [0.12, 0.14] | 0.07 [0.07, 0.08] | 0.5 [0.4, 0.6] | 0.55 [0.45, 0.65] | 0.47 [0.41, 0.53] | 0.5 [0.36, 0.64] | 0.22 [0.18, 0.26] | 0.35 [0.31, 0.39] | 0.35 [0.31, 0.39] | 0.99 [0.98, 1.0] | 0.52 [0.47, 0.56] | 0.0 [0.0, 0.0] | 0.0 [0.0, 0.0] | 0.0 [0.0, 0.0] | 0.0 [0.0, 0.0] | 0.0 [0.0, 0.0] | 0.0 [0.0, 0.0] |
43
- | 6 | utter-project/EuroLLM-9B | 0.77 [0.76, 0.79] | 0.12 [0.1, 0.14] | 0.53 [0.52, 0.55] | 0.53 [0.52, 0.55] | 0.55 [0.45, 0.65] | 0.78 [0.7, 0.86] | 0.73 [0.68, 0.79] | 0.79 [0.67, 0.9] | 0.55 [0.48, 0.62] | 0.39 [0.34, 0.43] | 0.64 [0.33, 1.0] | 0.04 [0.01, 0.07] | 0.07 [0.02, 0.12] | 0.34 [0.3, 0.38] | 0.95 [0.92, 0.98] | 0.5 [0.45, 0.54] | 0.87 [0.76, 0.96] | 0.22 [0.15, 0.28] | 0.35 [0.26, 0.42] |
44
- | 7 | utter-project/EuroLLM-9B-Instruct | 0.81 [0.79, 0.82] | 0.18 [0.15, 0.2] | 0.64 [0.62, 0.65] | 0.64 [0.62, 0.66] | 0.6 [0.5, 0.69] | 0.58 [0.48, 0.68] | 0.82 [0.77, 0.87] | 0.77 [0.65, 0.88] | 0.63 [0.46, 0.82] | 0.38 [0.34, 0.42] | 0.46 [0.41, 0.52] | 0.76 [0.69, 0.82] | 0.57 [0.52, 0.62] | 0.24 [0.18, 0.3] | 0.21 [0.15, 0.26] | 0.22 [0.16, 0.28] | 0.31 [0.21, 0.42] | 0.14 [0.09, 0.2] | 0.2 [0.13, 0.26] |
45
- | 8 | /models/hf_models/GaMS-9B-SecondRound | 0.78 [0.76, 0.79] | 0.23 [0.21, 0.26] | 0.63 [0.61, 0.65] | 0.53 [0.52, 0.55] | 0.59 [0.49, 0.68] | 0.65 [0.55, 0.75] | 0.77 [0.72, 0.82] | 0.68 [0.55, 0.8] | 0.64 [0.52, 0.76] | 0.46 [0.42, 0.5] | 0.49 [0.42, 0.57] | 0.45 [0.38, 0.52] | 0.47 [0.41, 0.53] | 0.33 [0.25, 0.4] | 0.29 [0.23, 0.36] | 0.31 [0.24, 0.37] | 0.53 [0.46, 0.6] | 0.62 [0.56, 0.7] | 0.57 [0.51, 0.63] |
46
-
47
- ### 3-shot results
48
-
49
- | | Model | BoolQ_accuracy | MultiRC_exact_match | MultiRC_per_question_f1 | MultiRC_f1_over_all_answers | WSC_accuracy | COPA_accuracy | RTE_accuracy | CB_accuracy | CB_f1 | NLI_accuracy | NLI_precision_entailment | NLI_recall_entailment | NLI_f1_entailment | NLI_precision_neutral | NLI_recall_neutral | NLI_f1_neutral | NLI_precision_contradiction | NLI_recall_contradiction | NLI_f1_contradiction |
50
- |--:|:---------------------------------------|:------------------|:----------------------|:--------------------------|:------------------------------|:------------------|:------------------|:------------------|:------------------|:------------------|:------------------|:---------------------------|:------------------------|:--------------------|:------------------------|:---------------------|:------------------|:------------------------------|:---------------------------|:-----------------------|
51
- | 0 | /models/hf_models/GaMS-9B-Parallel-2.0 | 0.83 [0.81, 0.84] | 0.36 [0.33, 0.39] | 0.74 [0.72, 0.75] | 0.74 [0.73, 0.76] | 0.64 [0.55, 0.74] | 0.87 [0.8, 0.94] | 0.78 [0.73, 0.83] | 0.84 [0.74, 0.94] | 0.59 [0.53, 0.64] | 0.48 [0.43, 0.52] | 0.38 [0.21, 0.56] | 0.07 [0.03, 0.11] | 0.11 [0.06, 0.18] | 0.37 [0.32, 0.42] | 0.67 [0.6, 0.74] | 0.48 [0.42, 0.53] | 0.66 [0.59, 0.73] | 0.72 [0.66, 0.78] | 0.69 [0.63, 0.75] |
52
- | 1 | google/gemma-2-9b | 0.82 [0.81, 0.83] | 0.37 [0.34, 0.4] | 0.75 [0.73, 0.77] | 0.75 [0.74, 0.77] | 0.66 [0.57, 0.76] | 0.88 [0.82, 0.94] | 0.79 [0.74, 0.84] | 0.88 [0.79, 0.96] | 0.61 [0.56, 0.65] | 0.48 [0.44, 0.52] | 0.52 [0.37, 0.65] | 0.15 [0.1, 0.19] | 0.23 [0.15, 0.29] | 0.37 [0.32, 0.42] | 0.77 [0.71, 0.83] | 0.5 [0.45, 0.55] | 0.75 [0.68, 0.82] | 0.56 [0.48, 0.63] | 0.64 [0.57, 0.71] |
53
- | 2 | google/gemma-2-9b-it | 0.84 [0.83, 0.85] | 0.15 [0.13, 0.18] | 0.66 [0.64, 0.67] | 0.65 [0.64, 0.67] | 0.7 [0.61, 0.79] | 0.89 [0.83, 0.95] | 0.82 [0.78, 0.87] | 0.84 [0.74, 0.94] | 0.75 [0.59, 0.88] | 0.65 [0.61, 0.69] | 0.66 [0.6, 0.72] | 0.77 [0.71, 0.83] | 0.71 [0.66, 0.76] | 0.56 [0.46, 0.68] | 0.28 [0.22, 0.35] | 0.37 [0.3, 0.45] | 0.68 [0.61, 0.74] | 0.88 [0.83, 0.92] | 0.76 [0.72, 0.81] |
54
- | 3 | zlatorog/Zlatorog_SFT_v2 | 0.83 [0.82, 0.84] | 0.04 [0.02, 0.05] | 0.54 [0.52, 0.55] | 0.55 [0.53, 0.56] | 0.51 [0.41, 0.61] | 0.66 [0.57, 0.75] | 0.73 [0.67, 0.78] | 0.7 [0.57, 0.82] | 0.48 [0.4, 0.56] | 0.56 [0.52, 0.6] | 0.55 [0.49, 0.62] | 0.62 [0.55, 0.69] | 0.58 [0.53, 0.64] | 0.39 [0.31, 0.49] | 0.24 [0.19, 0.31] | 0.3 [0.23, 0.37] | 0.64 [0.58, 0.71] | 0.79 [0.73, 0.85] | 0.71 [0.66, 0.76] |
55
- | 4 | cjvt/GaMS-1B | 0.49 [0.47, 0.5] | 0.07 [0.06, 0.09] | 0.41 [0.39, 0.43] | 0.37 [0.35, 0.39] | 0.58 [0.48, 0.67] | 0.49 [0.39, 0.59] | 0.47 [0.41, 0.53] | 0.43 [0.29, 0.56] | 0.21 [0.17, 0.25] | 0.32 [0.28, 0.36] | 0.36 [0.27, 0.44] | 0.22 [0.16, 0.29] | 0.27 [0.21, 0.34] | 0.31 [0.27, 0.36] | 0.77 [0.7, 0.83] | 0.44 [0.39, 0.49] | 0.0 [0.0, 0.0] | 0.0 [0.0, 0.0] | 0.0 [0.0, 0.0] |
56
- | 5 | cjvt/GaMS-1B-Chat | 0.59 [0.57, 0.61] | 0.04 [0.02, 0.05] | 0.34 [0.32, 0.36] | 0.16 [0.15, 0.16] | 0.63 [0.54, 0.73] | 0.55 [0.45, 0.65] | 0.47 [0.41, 0.53] | 0.43 [0.29, 0.56] | 0.2 [0.16, 0.24] | 0.36 [0.32, 0.4] | 0.36 [0.32, 0.4] | 0.99 [0.97, 1.0] | 0.53 [0.48, 0.57] | 0.47 [0.2, 0.73] | 0.04 [0.01, 0.07] | 0.07 [0.02, 0.13] | 0.0 [0.0, 0.0] | 0.0 [0.0, 0.0] | 0.0 [0.0, 0.0] |
57
- | 6 | utter-project/EuroLLM-9B | 0.81 [0.79, 0.82] | 0.17 [0.15, 0.2] | 0.61 [0.59, 0.63] | 0.58 [0.57, 0.6] | 0.65 [0.56, 0.75] | 0.63 [0.53, 0.73] | 0.73 [0.67, 0.78] | 0.73 [0.61, 0.85] | 0.59 [0.47, 0.71] | 0.45 [0.41, 0.49] | 1.0 [0.0, 1.0] | 0.02 [0.0, 0.04] | 0.03 [0.0, 0.07] | 0.38 [0.32, 0.45] | 0.53 [0.46, 0.61] | 0.44 [0.38, 0.51] | 0.49 [0.44, 0.55] | 0.83 [0.78, 0.88] | 0.62 [0.57, 0.67] |
58
- | 7 | utter-project/EuroLLM-9B-Instruct | 0.81 [0.79, 0.82] | 0.07 [0.05, 0.08] | 0.52 [0.5, 0.53] | 0.53 [0.51, 0.55] | 0.65 [0.56, 0.75] | 0.69 [0.6, 0.78] | 0.79 [0.74, 0.84] | 0.79 [0.67, 0.9] | 0.71 [0.56, 0.84] | 0.42 [0.38, 0.47] | 0.61 [0.53, 0.69] | 0.48 [0.41, 0.55] | 0.53 [0.47, 0.6] | 0.31 [0.26, 0.36] | 0.57 [0.5, 0.64] | 0.4 [0.35, 0.45] | 0.54 [0.43, 0.65] | 0.23 [0.17, 0.29] | 0.32 [0.25, 0.39] |
59
- | 8 | /models/hf_models/GaMS-9B-SecondRound | 0.8 [0.78, 0.81] | 0.15 [0.13, 0.17] | 0.64 [0.62, 0.65] | 0.58 [0.57, 0.6] | 0.66 [0.57, 0.76] | 0.9 [0.84, 0.96] | 0.82 [0.77, 0.87] | 0.84 [0.74, 0.94] | 0.73 [0.56, 0.87] | 0.56 [0.52, 0.6] | 0.58 [0.5, 0.66] | 0.38 [0.31, 0.46] | 0.46 [0.39, 0.53] | 0.42 [0.35, 0.5] | 0.44 [0.37, 0.51] | 0.43 [0.37, 0.49] | 0.65 [0.59, 0.71] | 0.86 [0.8, 0.91] | 0.74 [0.69, 0.79] |
60
-
61
-
62
- ## Model Details
63
-
64
- ### Model Description
65
-
66
- <!-- Provide a longer summary of what this model is. -->
67
-
68
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
69
 
70
- - **Developed by:** [More Information Needed]
71
- - **Funded by [optional]:** [More Information Needed]
72
- - **Shared by [optional]:** [More Information Needed]
73
- - **Model type:** [More Information Needed]
74
- - **Language(s) (NLP):** [More Information Needed]
75
- - **License:** [More Information Needed]
76
- - **Finetuned from model [optional]:** [More Information Needed]
77
 
78
- ### Model Sources [optional]
79
 
80
- <!-- Provide the basic links for the model. -->
81
 
82
- - **Repository:** [More Information Needed]
83
- - **Paper [optional]:** [More Information Needed]
84
- - **Demo [optional]:** [More Information Needed]
 
85
 
86
- ## Uses
87
 
88
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
89
 
90
- ### Direct Use
 
91
 
92
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
93
 
94
- [More Information Needed]
 
 
 
 
95
 
96
- ### Downstream Use [optional]
 
 
 
 
97
 
98
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
99
 
100
- [More Information Needed]
 
 
 
 
101
 
102
- ### Out-of-Scope Use
103
 
104
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
105
 
106
- [More Information Needed]
107
 
108
- ## Bias, Risks, and Limitations
 
 
 
 
109
 
110
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
111
 
112
- [More Information Needed]
 
 
 
 
113
 
114
- ### Recommendations
 
 
 
 
115
 
116
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
117
-
118
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
119
-
120
- ## How to Get Started with the Model
121
-
122
- Use the code below to get started with the model.
123
-
124
- [More Information Needed]
125
-
126
- ## Training Details
127
-
128
- ### Training Data
129
-
130
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
131
-
132
- [More Information Needed]
133
-
134
- ### Training Procedure
135
-
136
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
137
 
138
- #### Preprocessing [optional]
139
 
140
- [More Information Needed]
141
 
 
142
 
143
- #### Training Hyperparameters
 
 
 
 
 
 
144
 
145
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
146
 
147
- #### Speeds, Sizes, Times [optional]
148
 
149
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
 
 
 
 
 
 
 
 
150
 
151
- [More Information Needed]
 
 
152
 
153
  ## Evaluation
154
 
155
- <!-- This section describes the evaluation protocols and provides the results. -->
156
-
157
- ### Testing Data, Factors & Metrics
158
-
159
- #### Testing Data
160
-
161
- <!-- This should link to a Dataset Card if possible. -->
162
-
163
- [More Information Needed]
164
 
165
- #### Factors
 
 
166
 
167
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
168
-
169
- [More Information Needed]
170
-
171
- #### Metrics
172
-
173
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
174
-
175
- [More Information Needed]
176
-
177
- ### Results
178
-
179
- [More Information Needed]
180
-
181
- #### Summary
182
-
183
-
184
-
185
- ## Model Examination [optional]
186
-
187
- <!-- Relevant interpretability work for the model goes here -->
188
-
189
- [More Information Needed]
190
-
191
- ## Environmental Impact
192
-
193
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
194
-
195
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
196
-
197
- - **Hardware Type:** [More Information Needed]
198
- - **Hours used:** [More Information Needed]
199
- - **Cloud Provider:** [More Information Needed]
200
- - **Compute Region:** [More Information Needed]
201
- - **Carbon Emitted:** [More Information Needed]
202
-
203
- ## Technical Specifications [optional]
204
-
205
- ### Model Architecture and Objective
206
-
207
- [More Information Needed]
208
-
209
- ### Compute Infrastructure
210
-
211
- [More Information Needed]
212
-
213
- #### Hardware
214
-
215
- [More Information Needed]
216
-
217
- #### Software
218
-
219
- [More Information Needed]
220
-
221
- ## Citation [optional]
222
-
223
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
224
-
225
- **BibTeX:**
226
-
227
- [More Information Needed]
228
-
229
- **APA:**
230
-
231
- [More Information Needed]
232
-
233
- ## Glossary [optional]
234
-
235
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
236
-
237
- [More Information Needed]
238
-
239
- ## More Information [optional]
240
-
241
- [More Information Needed]
242
 
243
- ## Model Card Authors [optional]
244
 
245
- [More Information Needed]
246
 
247
- ## Model Card Contact
248
 
249
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ license: gemma
4
+ language:
5
+ - sl
6
+ - en
7
+ - hr
8
+ - sr
9
+ - bs
10
+ base_model:
11
+ - google/gemma-2-9b
12
+ pipeline_tag: text-generation
13
  ---
14
 
15
+ # Model Card for GaMS-9B
16
 
17
+ GaMS-2B, GaMS-9B and GaMS-27B represent new improved and larger models of the GaMS (Generative Model for Slovene) familly. The models are based on Google's Gemma 2 familly and continually pretrained on Slovene, English and some portion of Croatian, Serbian and Bosnian corpora.
18
 
19
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/652d40a78fa1fbb0aae165bb/94gX0PG8zRB_Zg31K2y_i.png)
20
 
21
+ ## Acknowledgment
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
+ The model was developed within the [PoVeJMo](https://www.cjvt.si/povejmo/en/project/) research program (Adaptive Natural Language Processing with Large Language Models), particularly within the research project titled SloLLaMai -- Open-access computationally efficient models for Slovenian. The program is funded within the Recovery and Resilience Plan by the Slovenian Research and Innovation Agency (ARIS) and NextGenerationEU. The authors also acknowledge the financial support from the Slovenian Research and Innovation Agency (research core funding No. P6-0411 -- Language Resources and Technologies for Slovene).
 
 
 
 
 
 
24
 
25
+ We thank everyone who worked on data collection and preparation, enabling us to train our model. Special thanks go to Nikola Ljubešić, Taja Kuzman, Tjaša Arčon, Jaka Čibej, Simon Krek, Tomaž Erjavec, Iztok Kosem and Tomaž Savodnik.
26
 
27
+ ## Basic information
28
 
29
+ - **Developed by:** team of researchers at the University of Ljubljana, Faculty for Computer and Information Science. Team members: Domen Vreš, Iztok Lebar Bajec, Tjaša Arčon, Gašper Jelovčan and Marko Robnik-Šikonja.
30
+ - **Languages:** Slovene, English (primary), Croatian, Bosnian and Serbian (secondary). The model might also work for other languages supported by Gemma 2, even though it was not continually pretrained on them.
31
+ - **Base model:** [google/gemma2-9b](https://huggingface.co/google/gemma-2-9b)
32
+ - **License:** [Gemma](https://ai.google.dev/gemma/terms)
33
 
34
+ ## Usage
35
 
36
+ The model can be run through `pipeline` API using the following code:
37
 
38
+ ```python
39
+ from transformers import pipeline
40
 
41
+ model_id = "cjvt/GaMS-9B"
42
 
43
+ pline = pipeline(
44
+ "text-generation",
45
+ model=model_id,
46
+ device_map="cuda" # replace with "mps" to run on a Mac device
47
+ )
48
 
49
+ prompts = [
50
+ "The examples of antonyms are:\nhigh => low\nwide => narrow\nbig =>",
51
+ "Pristanek je bil prvi nadzorovani spust ameriškega vesoljskega plovila na površje Lune po Apollu 17 leta 1972, ko je na Luni pristala zadnja Nasina misija s posadko.\nDoslej so na Luni pristala vesoljska plovila le iz štirih drugih držav –",
52
+ "U četvrtak je bila prva polufinalna večer Dore, a komentari na društvenim mrežama ne prestaju. U nedjeljno finale prošli su:"
53
+ ]
54
 
55
+ sequences = pline(
56
+ prompts,
57
+ max_new_tokens=512,
58
+ num_return_sequences=1
59
+ )
60
 
61
+ for seq in sequences:
62
+ print("--------------------------")
63
+ print(f"Result: {seq[0]['generated_text']}")
64
+ print("--------------------------\n")
65
+ ```
66
 
67
+ For multi GPU inference set the `device_map` to `auto`:
68
 
69
+ ```python
70
+ from transformers import pipeline
71
 
72
+ model_id = "cjvt/GaMS-9B"
73
 
74
+ pline = pipeline(
75
+ "text-generation",
76
+ model=model_id,
77
+ device_map="auto"
78
+ )
79
 
80
+ prompts = [
81
+ "The examples of antonyms are:\nhigh => low\nwide => narrow\nbig =>",
82
+ "Pristanek je bil prvi nadzorovani spust ameriškega vesoljskega plovila na površje Lune po Apollu 17 leta 1972, ko je na Luni pristala zadnja Nasina misija s posadko.\nDoslej so na Luni pristala vesoljska plovila le iz štirih drugih držav –",
83
+ "U četvrtak je bila prva polufinalna večer Dore, a komentari na društvenim mrežama ne prestaju. U nedjeljno finale prošli su:"
84
+ ]
85
 
86
+ sequences = pline(
87
+ prompts,
88
+ max_new_tokens=512,
89
+ num_return_sequences=1
90
+ )
91
 
92
+ for seq in sequences:
93
+ print("--------------------------")
94
+ print(f"Result: {seq[0]['generated_text']}")
95
+ print("--------------------------\n")
96
+ ```
97
 
98
+ ## Data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
 
100
+ ### CPT Data
101
 
102
+ Model was continually pre-trained in two stages. In the first stage, parallel English-Slovene (and Croatian in some cases) corpora was used to align the languages. In the second stage, the model was trained on separate English, Slovene, Croatian, Bosnian and Serbian corpora.
103
 
104
+ #### Parallel alignment corpora
105
 
106
+ | Corpus | Alignment level | # Tokens | Percentage |
107
+ | :----- | :------- | :------: | :--------: |
108
+ | KAS Abstracts | Document level | 31 M | 1.65 % |
109
+ | DGT | Separate documents | 697 M | 36.56 % |
110
+ | MaCoCu Parallel | Separate documents | 430 M | 22.53 % |
111
+ | CC-News | Paragraph level | 749 M | 39.25 % |
112
+ | Total | | 1.91 B | |
113
 
114
+ Explanation of each alignment level:
115
+ - Document level: Parallel documents were concatenated into a single document
116
+ - Separate documents: Parallel documents were not explicitly aligned
117
+ - Paragraph level: Paragraphs of parallel documents were concatenated (the first paragraph of Slovene/English document was followed by the first paragraph in the other language, which was then followed by the second paragraph in the first language and so on)
118
 
119
+ #### Second stage corpora
120
 
121
+ | Corpus | Language | # Tokens | Percentage |
122
+ | :----- | :------- | :------: | :--------: |
123
+ | [KAS](https://www.clarin.si/repository/xmlui/handle/11356/1448) | Slovene | 2.77 B | 20.34 % |
124
+ | [MetaFida](https://www.clarin.si/repository/xmlui/handle/11356/1775)* | Slovene | 4.66 B | 34.18 % |
125
+ | [Wikipedia-En](https://huggingface.co/datasets/zidsi/wikipedia_markdown) (Date: January 23rd 2025) | English | 5.45 B | 39.99 % |
126
+ | [Wikipedia-Sl](https://huggingface.co/datasets/zidsi/wikipedia_markdown) (Date: January 1st 2025) | Slovene | 0.16 B | 1.19 % |
127
+ | [Wikipedia-Hr](https://huggingface.co/datasets/zidsi/wikipedia_markdown) (Date: January 1st 2025) | Croatian | 0.15 B | 1.13 % |
128
+ | [Wikipedia-Bs](https://huggingface.co/datasets/zidsi/wikipedia_markdown) (Date: January 1st 2025) | Bosnian | 0.07 B | 0.50 % |
129
+ | [Wikipedia-Sr-Latin](https://huggingface.co/datasets/zidsi/wikipedia_markdown)* | Serbian | 0.36 B | 2.68 % |
130
+ | Total | | 13.62 B | |
131
 
132
+ Remarks:
133
+ - The following corpora was excluded from MetaFida: dgt15_sl, classlawiki_sl, tweet_sl, janes_tweet, janes_forum, janes_news
134
+ - Serbian Wikipedia was converted from Cyrillic to Latin
135
 
136
  ## Evaluation
137
 
138
+ The models were evaluated using [Slovene SuperGLUE](https://slobench.cjvt.si/leaderboard/view/3) collection of classification tasks on [SloBench](https://slobench.cjvt.si). Instruct version of the model was also evaluated on translation [from English to Slovene](https://slobench.cjvt.si/leaderboard/view/8) and [from Slovene to English](https://slobench.cjvt.si/leaderboard/view/7) Additionally, we evaluated our models on [Slovenian-LLM-Eval](https://huggingface.co/datasets/cjvt/slovenian-llm-eval).
 
 
 
 
 
 
 
 
139
 
140
+ Code for evaluation:
141
+ - [SloBench tasks](https://github.com/SloLama/slobench_evaluation)
142
+ - [Slovenian-LLM-Eval](https://github.com/SloLama/slovenian-llm-eval)
143
 
144
+ ## Slovenian-LLM-Eval results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145
 
146
+ Comparison between GaMS models, base Gemma 2 models and SlovenianGPT (open source model for Slovene based on Mistral 7B) is shown in the figure below. All models were evaluated in 0-shot scenario.
147
 
148
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/652d40a78fa1fbb0aae165bb/tDyAjB2dgYXv1dLpFHikd.png)
149
 
150
+ ## Slobench Results
151
 
152
+ GaMS 2B, 9B and 27B models were evaluated in 3-shot scenario, except for MultiRC and translation tasks, where 0-shot was used. GaMS-9B-Instruct was evaluated in 0-shot scenarion on all tasks. We used guided decoding to ensure the correct format of the responses.
153
+
154
+ ### Slovene SuperGLUE
155
+
156
+ | Rank | Title | Average | BoolQ Accuracy | CB Accuracy | CB F1 Score | CB Average | COPA Accuracy | MultiRC EM | MultiRC F1a Score | MultiRC Average | RTE Accuracy | WSC Accuracy |
157
+ |------|------------------------|---------|---------------|-------------|-------------|------------|--------------|------------|----------------|----------------|-------------|-------------|
158
+ | 1 | GaMS-27B | 0.7601 | 0.8333 | 0.6440 | 0.5864 | 0.6152 | 0.9540 | 0.3904 | 0.7504 | 0.5704 | 0.7931 | 0.7945 |
159
+ | 2 | PrešernGPT 0.1 | 0.7568 | 0.8333 | 0.8520 | 0.5868 | 0.7194 | 0.9740 | 0.4985 | 0.8061 | 0.6523 | 0.8276 | 0.5342 |
160
+ | 3 | Gemma 2 27B | 0.7546 | 0.8333 | 0.6680 | 0.5972 | 0.6326 | 0.9140 | 0.4174 | 0.7295 | 0.5735 | 0.8276 | 0.7466 |
161
+ | 4 | GaMS-9B | 0.7309 | 0.7000 | 0.8400 | 0.7955 | 0.8178 | 0.9000 | 0.3243 | 0.6551 | 0.4897 | 0.7931 | 0.6849 |
162
+ | 5 | GaMS-9B-Instruct | 0.6997 | 0.8000 | 0.7960 | 0.7128 | 0.7544 | 0.8140 | 0.0721 | 0.6174 | 0.3447 | 0.7931 | 0.6918 |
163
+ | 6 | Gemma 2 9B | 0.6980 | 0.8333 | 0.8240 | 0.5683 | 0.6962 | 0.8700 | 0.2282 | 0.5310 | 0.3796 | 0.7241 | 0.6849 |
164
+ | 8 | CroSloEngual BERT | 0.6078 | 0.7333 | 0.7920 | 0.7437 | 0.7679 | 0.5720 | 0.0931 | 0.5241 | 0.3086 | 0.6552 | 0.6096 |
165
+ | 11 | SlovenianGPT-Chat | 0.5078 | 0.7333 | 0.3920 | 0.3829 | 0.3874 | 0.6840 | 0.2432 | 0.4944 | 0.3688 | 0.5172 | 0.3562 |
166
+ | 12 | Gemma 2 2B | 0.4876 | 0.6333 | 0.4520 | 0.2123 | 0.3321 | 0.5180 | 0.1471 | 0.4419 | 0.2945 | 0.5862 | 0.5616 |
167
+ | 13 | GaMS-2B | 0.4790 | 0.5667 | 0.6080 | 0.4880 | 0.5480 | 0.5240 | 0.0631 | 0.5234 | 0.2932 | 0.5517 | 0.3904 |
168
+ | 14 | GaMS-1B | 0.4604 | 0.5000 | 0.6200 | 0.4565 | 0.5382 | 0.4920 | 0.1351 | 0.2675 | 0.2013 | 0.4828 | 0.5479 |
169
+ | 15 | GaMS-1B-Chat | 0.4570 | 0.8000 | 0.4880 | 0.3023 | 0.3951 | 0.4840 | 0.1081 | 0.2428 | 0.1755 | 0.5172 | 0.3692 |
170
+
171
+
172
+ ### English to Slovene translation (first 11 models on the benchmark)
173
+
174
+ | Rank | Title | BERT score | BLEU (avg) | METEOR (avg) | CHRF (avg) | BLEU (corpus) | CHRF (corpus) |
175
+ |------|---------------------------------|------------|------------|--------------|------------|---------------|---------------|
176
+ | 1 | DeepL Translator | 0.8812 | 0.3153 | 0.5902 | 0.6205 | 0.3599 | 0.6205 |
177
+ | 2 | gemini-1.5-pro | 0.8791 | 0.3124 | 0.5895 | 0.6176 | 0.3569 | 0.6176 |
178
+ | 3 | Sonnet 3.5 | 0.8789 | 0.3059 | 0.5783 | 0.6204 | 0.3442 | 0.6204 |
179
+ | 4 | gpt-4o | 0.8784 | 0.2958 | 0.5811 | 0.6138 | 0.3379 | 0.6138 |
180
+ | 5 | EuroLLM-9B-Instruct | 0.8741 | 0.2927 | 0.5792 | 0.6055 | 0.3273 | 0.6055 |
181
+ | 6 | seamless-m4t-v2-large | 0.8731 | 0.2780 | 0.5599 | 0.5947 | 0.3085 | 0.5947 |
182
+ | 7 | **GaMS-9B-Instruct** | 0.8713 | 0.2773 | 0.5616 | 0.5928 | 0.3209 | 0.5928 |
183
+ | 8 | Zlatorog | 0.8706 | 0.2834 | 0.5633 | 0.6014 | 0.2903 | 0.6014 |
184
+ | 9 | RSDO-DS4-NMT 1.2.2 | 0.8705 | 0.2794 | 0.5634 | 0.5956 | 0.3226 | 0.5956 |
185
+ | 9 | META LLAMA 3.1 405B | 0.8705 | 0.2637 | 0.5497 | 0.5930 | 0.3063 | 0.5930 |
186
+ | 11 | RSDO-DS4-NMT 1.2 | 0.8698 | 0.2781 | 0.5602 | 0.5970 | 0.3177 | 0.5970 |
187
+
188
+ ### Slovene to English translation (first 10 models on the benchmark)
189
+
190
+ | Rank | Title | BERT score | BLEU (avg) | METEOR (avg) | CHRF (avg) | BLEU (corpus) | CHRF (corpus) |
191
+ |------|---------------------|------------|------------|--------------|------------|---------------|---------------|
192
+ | 1 | gpt-4o | 0.9496 | 0.3161 | 0.6655 | 0.6297 | 0.3496 | 0.6297 |
193
+ | 2 | gemini-1.5-pro | 0.9489 | 0.3117 | 0.6560 | 0.6237 | 0.3502 | 0.6237 |
194
+ | 3 | gpt-4o-mini | 0.9466 | 0.2976 | 0.6493 | 0.6197 | 0.3328 | 0.6197 |
195
+ | 4 | **GaMS-9B-Instruct** | 0.9454 | 0.2821 | 0.6275 | 0.6018 | 0.3141 | 0.6018 |
196
+ | 5 | ChatGPTv1 | 0.9449 | 0.2852 | 0.6415 | 0.6096 | 0.3171 | 0.6096 |
197
+ | 6 | RSDO-DS4-NMT 1.2.4 | 0.9434 | 0.2839 | 0.6227 | 0.5967 | 0.3290 | 0.5967 |
198
+ | 7 | RSDO-DS4-NMT 1.2.6 | 0.9433 | 0.2832 | 0.6207 | 0.5944 | 0.3295 | 0.5944 |
199
+ | 8 | RSDO-DS4-NMT 1.2.2 | 0.9431 | 0.2785 | 0.6184 | 0.5933 | 0.3240 | 0.5933 |
200
+ | 8 | RSDO-DS4-NMT 1.2 | 0.9431 | 0.2805 | 0.6201 | 0.5941 | 0.3231 | 0.5941 |
201
+ | 10 | eTranslation SLEN | 0.9414 | 0.2729 | 0.6175 | 0.5913 | 0.3119 | 0.5913 |
202
+
203
+
204
+ ## Usage and Limitations (taken from Gemma 2)
205
+
206
+ These models have certain limitations that users should be aware of.
207
+
208
+ ### Intended Usage
209
+
210
+ Open Large Language Models (LLMs) have a wide range of applications across
211
+ various industries and domains. The following list of potential uses is not
212
+ comprehensive. The purpose of this list is to provide contextual information
213
+ about the possible use-cases that the model creators considered as part of model
214
+ training and development.
215
+
216
+ * Content Creation and Communication
217
+ * Text Generation: These models can be used to generate creative text formats
218
+ such as poems, scripts, code, marketing copy, and email drafts.
219
+ * Chatbots and Conversational AI: Power conversational interfaces for customer
220
+ service, virtual assistants, or interactive applications.
221
+ * Text Summarization: Generate concise summaries of a text corpus, research
222
+ papers, or reports.
223
+ * Research and Education
224
+ * Natural Language Processing (NLP) Research: These models can serve as a
225
+ foundation for researchers to experiment with NLP techniques, develop
226
+ algorithms, and contribute to the advancement of the field.
227
+ * Language Learning Tools: Support interactive language learning experiences,
228
+ aiding in grammar correction or providing writing practice.
229
+ * Knowledge Exploration: Assist researchers in exploring large bodies of text
230
+ by generating summaries or answering questions about specific topics.
231
+
232
+ ### Limitations
233
+
234
+ * Training Data
235
+ * The quality and diversity of the training data significantly influence the
236
+ model's capabilities. Biases or gaps in the training data can lead to
237
+ limitations in the model's responses.
238
+ * The scope of the training dataset determines the subject areas the model can
239
+ handle effectively.
240
+ * Context and Task Complexity
241
+ * LLMs are better at tasks that can be framed with clear prompts and
242
+ instructions. Open-ended or highly complex tasks might be challenging.
243
+ * A model's performance can be influenced by the amount of context provided
244
+ (longer context generally leads to better outputs, up to a certain point).
245
+ * Language Ambiguity and Nuance
246
+ * Natural language is inherently complex. LLMs might struggle to grasp subtle
247
+ nuances, sarcasm, or figurative language.
248
+ * Factual Accuracy
249
+ * LLMs generate responses based on information they learned from their
250
+ training datasets, but they are not knowledge bases. They may generate
251
+ incorrect or outdated factual statements.
252
+ * Common Sense
253
+ * LLMs rely on statistical patterns in language. They might lack the ability
254
+ to apply common sense reasoning in certain situations.
255
+
256
+ ### Ethical Considerations and Risks
257
+
258
+ The development of large language models (LLMs) raises several ethical concerns.
259
+ In creating an open model, we have carefully considered the following:
260
+
261
+ * Bias and Fairness
262
+ * LLMs trained on large-scale, real-world text data can reflect socio-cultural
263
+ biases embedded in the training material. These models underwent careful
264
+ scrutiny, input data pre-processing described and posterior evaluations
265
+ reported in this card.
266
+ * Misinformation and Misuse
267
+ * LLMs can be misused to generate text that is false, misleading, or harmful.
268
+ * Guidelines are provided for responsible use with the model, see the
269
+ [Responsible Generative AI Toolkit][rai-toolkit].
270
+ * Transparency and Accountability:
271
+ * This model card summarizes details on the models' architecture,
272
+ capabilities, limitations, and evaluation processes.
273
+ * A responsibly developed open model offers the opportunity to share
274
+ innovation by making LLM technology accessible to developers and researchers
275
+ across the AI ecosystem.
276
+
277
+ Risks identified and mitigations:
278
+
279
+ * Perpetuation of biases: It's encouraged to perform continuous monitoring
280
+ (using evaluation metrics, human review) and the exploration of de-biasing
281
+ techniques during model training, fine-tuning, and other use cases.
282
+ * Generation of harmful content: Mechanisms and guidelines for content safety
283
+ are essential. Developers are encouraged to exercise caution and implement
284
+ appropriate content safety safeguards based on their specific product policies
285
+ and application use cases.
286
+ * Misuse for malicious purposes: Technical limitations and developer and
287
+ end-user education can help mitigate against malicious applications of LLMs.
288
+ Educational resources and reporting mechanisms for users to flag misuse are
289
+ provided. Prohibited uses of Gemma models are outlined in the
290
+ [Gemma Prohibited Use Policy][prohibited-use].
291
+ * Privacy violations: Models were trained on data filtered for removal of PII
292
+ (Personally Identifiable Information). Developers are encouraged to adhere to
293
+ privacy regulations with privacy-preserving techniques.