Update README.md
Browse files
README.md
CHANGED
|
@@ -1,141 +1,126 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
pipeline_tag: sentence-similarity
|
| 5 |
tags:
|
| 6 |
-
- sentence-transformers
|
| 7 |
- sentence-similarity
|
| 8 |
- feature-extraction
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
---
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [hpprc/ruri-v2-pt-small-m](https://huggingface.co/hpprc/ruri-v2-pt-small-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 14 |
-
|
| 15 |
-
## Model Details
|
| 16 |
-
|
| 17 |
-
### Model Description
|
| 18 |
-
- **Model Type:** Sentence Transformer
|
| 19 |
-
- **Base model:** [hpprc/ruri-v2-pt-small-m](https://huggingface.co/hpprc/ruri-v2-pt-small-m) <!-- at revision c64c90af5641f0e60d2a384240f29f8cf2cd6167 -->
|
| 20 |
-
- **Maximum Sequence Length:** 512 tokens
|
| 21 |
-
- **Output Dimensionality:** 768 tokens
|
| 22 |
-
- **Similarity Function:** Cosine Similarity
|
| 23 |
-
<!-- - **Training Dataset:** Unknown -->
|
| 24 |
-
<!-- - **Language:** Unknown -->
|
| 25 |
-
<!-- - **License:** Unknown -->
|
| 26 |
-
|
| 27 |
-
### Model Sources
|
| 28 |
-
|
| 29 |
-
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 30 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 31 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 32 |
-
|
| 33 |
-
### Full Model Architecture
|
| 34 |
-
|
| 35 |
-
```
|
| 36 |
-
MySentenceTransformer(
|
| 37 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
|
| 38 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 39 |
-
)
|
| 40 |
-
```
|
| 41 |
|
| 42 |
## Usage
|
| 43 |
|
| 44 |
-
### Direct Usage (Sentence Transformers)
|
| 45 |
-
|
| 46 |
First install the Sentence Transformers library:
|
| 47 |
|
| 48 |
```bash
|
| 49 |
-
pip install -U sentence-transformers
|
| 50 |
```
|
| 51 |
|
| 52 |
Then you can load this model and run inference.
|
| 53 |
```python
|
|
|
|
| 54 |
from sentence_transformers import SentenceTransformer
|
| 55 |
|
| 56 |
# Download from the 🤗 Hub
|
| 57 |
-
model = SentenceTransformer("
|
| 58 |
-
|
|
|
|
| 59 |
sentences = [
|
| 60 |
-
|
| 61 |
-
"
|
| 62 |
-
|
|
|
|
| 63 |
]
|
| 64 |
-
embeddings = model.encode(sentences)
|
| 65 |
-
print(embeddings.shape)
|
| 66 |
-
# [3, 768]
|
| 67 |
-
|
| 68 |
-
# Get the similarity scores for the embeddings
|
| 69 |
-
similarities = model.similarity(embeddings, embeddings)
|
| 70 |
-
print(similarities.shape)
|
| 71 |
-
# [3, 3]
|
| 72 |
-
```
|
| 73 |
-
|
| 74 |
-
<!--
|
| 75 |
-
### Direct Usage (Transformers)
|
| 76 |
-
|
| 77 |
-
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
|
|
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
You can finetune this model on your own dataset.
|
| 86 |
-
|
| 87 |
-
<details><summary>Click to expand</summary>
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
-
<!--
|
| 93 |
-
### Out-of-Scope Use
|
| 94 |
|
| 95 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 96 |
-
-->
|
| 97 |
|
| 98 |
-
|
| 99 |
-
## Bias, Risks and Limitations
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
-
<!--
|
| 105 |
-
### Recommendations
|
| 106 |
|
| 107 |
-
|
| 108 |
-
-->
|
| 109 |
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
### Framework Versions
|
| 113 |
- Python: 3.10.13
|
| 114 |
-
- Sentence Transformers: 3.
|
| 115 |
-
- Transformers: 4.
|
| 116 |
-
- PyTorch: 2.
|
| 117 |
-
- Accelerate: 0.
|
| 118 |
- Datasets: 2.19.1
|
| 119 |
-
- Tokenizers: 0.
|
| 120 |
|
| 121 |
## Citation
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
-->
|
| 136 |
|
| 137 |
-
<!--
|
| 138 |
-
## Model Card Contact
|
| 139 |
|
| 140 |
-
|
| 141 |
-
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- ja
|
|
|
|
| 4 |
tags:
|
|
|
|
| 5 |
- sentence-similarity
|
| 6 |
- feature-extraction
|
| 7 |
+
base_model: cl-nagoya/ruri-pt-small-v2
|
| 8 |
+
widget: []
|
| 9 |
+
pipeline_tag: sentence-similarity
|
| 10 |
+
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# Ruri: Japanese General Text Embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
## Usage
|
| 16 |
|
|
|
|
|
|
|
| 17 |
First install the Sentence Transformers library:
|
| 18 |
|
| 19 |
```bash
|
| 20 |
+
pip install -U sentence-transformers fugashi sentencepiece unidic-lite
|
| 21 |
```
|
| 22 |
|
| 23 |
Then you can load this model and run inference.
|
| 24 |
```python
|
| 25 |
+
import torch.nn.functional as F
|
| 26 |
from sentence_transformers import SentenceTransformer
|
| 27 |
|
| 28 |
# Download from the 🤗 Hub
|
| 29 |
+
model = SentenceTransformer("cl-nagoya/ruri-small-v2")
|
| 30 |
+
|
| 31 |
+
# Don't forget to add the prefix "クエリ: " for query-side or "文章: " for passage-side texts.
|
| 32 |
sentences = [
|
| 33 |
+
"クエリ: 瑠璃色はどんな色?",
|
| 34 |
+
"文章: 瑠璃色(るりいろ)は、紫みを帯びた濃い青。名は、半貴石の瑠璃(ラピスラズリ、英: lapis lazuli)による。JIS慣用色名では「こい紫みの青」(略号 dp-pB)と定義している[1][2]。",
|
| 35 |
+
"クエリ: ワシやタカのように、鋭いくちばしと爪を持った大型の鳥類を総称して「何類」というでしょう?",
|
| 36 |
+
"文章: ワシ、タカ、ハゲワシ、ハヤブサ、コンドル、フクロウが代表的である。これらの猛禽類はリンネ前後の時代(17~18世紀)には鷲類・鷹類・隼類及び梟類に分類された。ちなみにリンネは狩りをする鳥を単一の目(もく)にまとめ、vultur(コンドル、ハゲワシ)、falco(ワシ、タカ、ハヤブサなど)、strix(フクロウ)、lanius(モズ)の4属を含めている。",
|
| 37 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
embeddings = model.encode(sentences, convert_to_tensor=True)
|
| 40 |
+
print(embeddings.size())
|
| 41 |
+
# [4, 768]
|
| 42 |
|
| 43 |
+
similarities = F.cosine_similarity(embeddings.unsqueeze(0), embeddings.unsqueeze(1), dim=2)
|
| 44 |
+
print(similarities)
|
| 45 |
+
```
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
## Benchmarks
|
| 48 |
+
|
| 49 |
+
### JMTEB
|
| 50 |
+
Evaluated with [JMTEB](https://github.com/sbintuitions/JMTEB).
|
| 51 |
+
|
| 52 |
+
|Model|#Param.|Avg.|Retrieval|STS|Classfification|Reranking|Clustering|PairClassification|
|
| 53 |
+
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
|
| 54 |
+
|[cl-nagoya/sup-simcse-ja-base](https://huggingface.co/cl-nagoya/sup-simcse-ja-base)|111M|68.56|49.64|82.05|73.47|91.83|51.79|62.57|
|
| 55 |
+
|[cl-nagoya/sup-simcse-ja-large](https://huggingface.co/cl-nagoya/sup-simcse-ja-large)|337M|66.51|37.62|83.18|73.73|91.48|50.56|62.51|
|
| 56 |
+
|[cl-nagoya/unsup-simcse-ja-base](https://huggingface.co/cl-nagoya/unsup-simcse-ja-base)|111M|65.07|40.23|78.72|73.07|91.16|44.77|62.44|
|
| 57 |
+
|[cl-nagoya/unsup-simcse-ja-large](https://huggingface.co/cl-nagoya/unsup-simcse-ja-large)|337M|66.27|40.53|80.56|74.66|90.95|48.41|62.49|
|
| 58 |
+
|[pkshatech/GLuCoSE-base-ja](https://huggingface.co/pkshatech/GLuCoSE-base-ja)|133M|70.44|59.02|78.71|76.82|91.90|49.78|66.39|
|
| 59 |
+
||||||||||
|
| 60 |
+
|[sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE)|472M|64.70|40.12|76.56|72.66|91.63|44.88|62.33|
|
| 61 |
+
|[intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small)|118M|69.52|67.27|80.07|67.62|93.03|46.91|62.19|
|
| 62 |
+
|[intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base)|278M|70.12|68.21|79.84|69.30|92.85|48.26|62.26|
|
| 63 |
+
|[intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large)|560M|71.65|70.98|79.70|72.89|92.96|51.24|62.15|
|
| 64 |
+
||||||||||
|
| 65 |
+
|OpenAI/text-embedding-ada-002|-|69.48|64.38|79.02|69.75|93.04|48.30|62.40|
|
| 66 |
+
|OpenAI/text-embedding-3-small|-|70.86|66.39|79.46|73.06|92.92|51.06|62.27|
|
| 67 |
+
|OpenAI/text-embedding-3-large|-|73.97|74.48|82.52|77.58|93.58|53.32|62.35|
|
| 68 |
+
||||||||||
|
| 69 |
+
|[Ruri-Small](https://huggingface.co/cl-nagoya/ruri-small)|68M|71.53|69.41|82.79|76.22|93.00|51.19|62.11|
|
| 70 |
+
|[**Ruri-Small v2**](https://huggingface.co/cl-nagoya/ruri-small-v2) (this model)|68M|73.30|73.94|82.91|76.17|93.20|51.58|62.32|
|
| 71 |
+
|[Ruri-Base](https://huggingface.co/cl-nagoya/ruri-base)|111M|71.91|69.82|82.87|75.58|92.91|54.16|62.38|
|
| 72 |
+
|[Ruri-Base v2](https://huggingface.co/cl-nagoya/ruri-base-v2)|111M|72.48|72.33|83.03|75.34|93.17|51.38|62.35|
|
| 73 |
+
|[Ruri-Large](https://huggingface.co/cl-nagoya/ruri-large)|337M|73.31|73.02|83.13|77.43|92.99|51.82|62.29|
|
| 74 |
+
|[Ruri-Large v2](https://huggingface.co/cl-nagoya/ruri-large-v2)|337M|74.55|76.34|83.17|77.18|93.21|52.14|62.27|
|
| 75 |
|
|
|
|
|
|
|
| 76 |
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
## Model Details
|
|
|
|
| 79 |
|
| 80 |
+
### Model Description
|
| 81 |
+
- **Model Type:** Sentence Transformer
|
| 82 |
+
- **Base model:** [cl-nagoya/ruri-pt-small-v2](https://huggingface.co/cl-nagoya/ruri-pt-small-v2)
|
| 83 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 84 |
+
- **Output Dimensionality:** 768
|
| 85 |
+
- **Similarity Function:** Cosine Similarity
|
| 86 |
+
- **Language:** Japanese
|
| 87 |
+
- **License:** Apache 2.0
|
| 88 |
+
- **Paper:** https://arxiv.org/abs/2409.07737
|
| 89 |
|
|
|
|
|
|
|
| 90 |
|
| 91 |
+
### Full Model Architecture
|
|
|
|
| 92 |
|
| 93 |
+
```
|
| 94 |
+
SentenceTransformer(
|
| 95 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
| 96 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 97 |
+
)
|
| 98 |
+
```
|
| 99 |
|
| 100 |
### Framework Versions
|
| 101 |
- Python: 3.10.13
|
| 102 |
+
- Sentence Transformers: 3.0.0
|
| 103 |
+
- Transformers: 4.41.2
|
| 104 |
+
- PyTorch: 2.3.1+cu118
|
| 105 |
+
- Accelerate: 0.30.1
|
| 106 |
- Datasets: 2.19.1
|
| 107 |
+
- Tokenizers: 0.19.1
|
| 108 |
|
| 109 |
## Citation
|
| 110 |
|
| 111 |
+
```bibtex
|
| 112 |
+
@misc{
|
| 113 |
+
Ruri,
|
| 114 |
+
title={{Ruri: Japanese General Text Embeddings}},
|
| 115 |
+
author={Hayato Tsukagoshi and Ryohei Sasano},
|
| 116 |
+
year={2024},
|
| 117 |
+
eprint={2409.07737},
|
| 118 |
+
archivePrefix={arXiv},
|
| 119 |
+
primaryClass={cs.CL},
|
| 120 |
+
url={https://arxiv.org/abs/2409.07737},
|
| 121 |
+
}
|
| 122 |
+
```
|
|
|
|
| 123 |
|
|
|
|
|
|
|
| 124 |
|
| 125 |
+
## License
|
| 126 |
+
This model is published under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
|