Sentence Similarity
Safetensors
Japanese
modernbert
feature-extraction
hpprc commited on
Commit
7886bde
·
verified ·
1 Parent(s): b7044e8

Upload 17 files

Browse files
results/Classification/scores_amazon_counterfactual_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.8076989283604759,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.9098712446351931,
9
+ "macro_f1": 0.6259174311926605
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.9120171673819742,
13
+ "macro_f1": 0.7401074610623682
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.9346895074946466,
19
+ "macro_f1": 0.8076989283604759
20
+ }
21
+ }
22
+ }
23
+ }
results/Classification/scores_amazon_review_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.6023266627293248,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.4572,
9
+ "macro_f1": 0.4502483462385972
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.6076,
13
+ "macro_f1": 0.6024977722075338
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.6066,
19
+ "macro_f1": 0.6023266627293248
20
+ }
21
+ }
22
+ }
23
+ }
results/Classification/scores_massive_intent_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.7927230771632646,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.7712739793408756,
9
+ "macro_f1": 0.7556875588894797
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.8327594687653713,
13
+ "macro_f1": 0.8262484502743833
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.8298587760591796,
19
+ "macro_f1": 0.7927230771632646
20
+ }
21
+ }
22
+ }
23
+ }
results/Classification/scores_massive_scenario_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.8836398132177599,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.8657156910969012,
9
+ "macro_f1": 0.859699565451082
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.882439744220364,
13
+ "macro_f1": 0.8795176163694028
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.8856758574310692,
19
+ "macro_f1": 0.8836398132177599
20
+ }
21
+ }
22
+ }
23
+ }
results/Clustering/scores_livedoor_news.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "v_measure_score",
3
+ "metric_value": 0.5939535754736538,
4
+ "details": {
5
+ "optimal_clustering_model_name": "MiniBatchKMeans",
6
+ "val_scores": {
7
+ "MiniBatchKMeans": {
8
+ "v_measure_score": 0.6179348586449083,
9
+ "homogeneity_score": 0.6097315440677872,
10
+ "completeness_score": 0.6263619179001741
11
+ },
12
+ "AgglomerativeClustering": {
13
+ "v_measure_score": 0.565105497880692,
14
+ "homogeneity_score": 0.5487443358232884,
15
+ "completeness_score": 0.5824722800893678
16
+ },
17
+ "BisectingKMeans": {
18
+ "v_measure_score": 0.5881070284908587,
19
+ "homogeneity_score": 0.5832820306222675,
20
+ "completeness_score": 0.5930125184379058
21
+ },
22
+ "Birch": {
23
+ "v_measure_score": 0.5762425233128152,
24
+ "homogeneity_score": 0.5604724804195008,
25
+ "completeness_score": 0.5929257042269046
26
+ }
27
+ },
28
+ "test_scores": {
29
+ "MiniBatchKMeans": {
30
+ "v_measure_score": 0.5939535754736538,
31
+ "homogeneity_score": 0.584706903609041,
32
+ "completeness_score": 0.6034974040690197
33
+ }
34
+ }
35
+ }
36
+ }
results/Clustering/scores_mewsc16.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "v_measure_score",
3
+ "metric_value": 0.5133038855338062,
4
+ "details": {
5
+ "optimal_clustering_model_name": "Birch",
6
+ "val_scores": {
7
+ "MiniBatchKMeans": {
8
+ "v_measure_score": 0.5141650401941852,
9
+ "homogeneity_score": 0.5643883631931368,
10
+ "completeness_score": 0.472149768651869
11
+ },
12
+ "AgglomerativeClustering": {
13
+ "v_measure_score": 0.5147662040011469,
14
+ "homogeneity_score": 0.5531310208295678,
15
+ "completeness_score": 0.48137812268486785
16
+ },
17
+ "BisectingKMeans": {
18
+ "v_measure_score": 0.40154435516793424,
19
+ "homogeneity_score": 0.4376668007935588,
20
+ "completeness_score": 0.37092997494412233
21
+ },
22
+ "Birch": {
23
+ "v_measure_score": 0.51740915477174,
24
+ "homogeneity_score": 0.5588139550196363,
25
+ "completeness_score": 0.4817167967576891
26
+ }
27
+ },
28
+ "test_scores": {
29
+ "Birch": {
30
+ "v_measure_score": 0.5133038855338062,
31
+ "homogeneity_score": 0.5481383517989595,
32
+ "completeness_score": 0.4826323579250646
33
+ }
34
+ }
35
+ }
36
+ }
results/PairClassification/scores_paws_x_ja.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "binary_f1",
3
+ "metric_value": 0.6225736879942487,
4
+ "details": {
5
+ "optimal_distance_metric": "dot_similarities",
6
+ "val_scores": {
7
+ "cosine_distances": {
8
+ "accuracy": 0.5725,
9
+ "accuracy_threshold": 0.7325698733329773,
10
+ "binary_f1": 0.5979670522257273,
11
+ "binary_f1_threshold": 1.0
12
+ },
13
+ "manhatten_distances": {
14
+ "accuracy": 0.6075,
15
+ "accuracy_threshold": 91.31901550292969,
16
+ "binary_f1": 0.6016949152542372,
17
+ "binary_f1_threshold": 786.4454956054688
18
+ },
19
+ "euclidean_distances": {
20
+ "accuracy": 0.6075,
21
+ "accuracy_threshold": 5.207228660583496,
22
+ "binary_f1": 0.6016949152542372,
23
+ "binary_f1_threshold": 45.460025787353516
24
+ },
25
+ "dot_similarities": {
26
+ "accuracy": 0.5825,
27
+ "accuracy_threshold": 6222.314453125,
28
+ "binary_f1": 0.6046176046176047,
29
+ "binary_f1_threshold": 5251.693359375
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "dot_similarities": {
34
+ "accuracy": 0.5705,
35
+ "accuracy_threshold": 6222.314453125,
36
+ "binary_f1": 0.6225736879942487,
37
+ "binary_f1_threshold": 5251.693359375
38
+ }
39
+ }
40
+ }
41
+ }
results/Reranking/scores_esci.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.9331356704615785,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "ndcg@10": 0.9483311922009414,
9
+ "ndcg@20": 0.9590595401853188,
10
+ "ndcg@40": 0.9665080519499122
11
+ },
12
+ "dot_score": {
13
+ "ndcg@10": 0.9318167851589819,
14
+ "ndcg@20": 0.9466971872170977,
15
+ "ndcg@40": 0.9552823872527728
16
+ },
17
+ "euclidean_distance": {
18
+ "ndcg@10": 0.9481847893372933,
19
+ "ndcg@20": 0.9590500530543331,
20
+ "ndcg@40": 0.9664888451197884
21
+ }
22
+ },
23
+ "test_scores": {
24
+ "cosine_similarity": {
25
+ "ndcg@10": 0.9331356704615785,
26
+ "ndcg@20": 0.9494976605587823,
27
+ "ndcg@40": 0.9587744868943343
28
+ }
29
+ }
30
+ }
31
+ }
results/Retrieval/scores_jagovfaqs_22k.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.7663671365613799,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.6343960222287218,
9
+ "accuracy@3": 0.8008189529102077,
10
+ "accuracy@5": 0.8464463293360632,
11
+ "accuracy@10": 0.8900263234863995,
12
+ "ndcg@10": 0.7660950250050058,
13
+ "mrr@10": 0.7259386156724558
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.3208540508920737,
17
+ "accuracy@3": 0.5007312079555426,
18
+ "accuracy@5": 0.5761918689675344,
19
+ "accuracy@10": 0.6689090377303305,
20
+ "ndcg@10": 0.48749995541910557,
21
+ "mrr@10": 0.43037089653059146
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.6320561567709857,
25
+ "accuracy@3": 0.7990640538169055,
26
+ "accuracy@5": 0.8455688797894121,
27
+ "accuracy@10": 0.8873939748464463,
28
+ "ndcg@10": 0.7638332042813676,
29
+ "mrr@10": 0.7237720348937082
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.6356725146198831,
35
+ "accuracy@3": 0.8014619883040935,
36
+ "accuracy@5": 0.8482456140350877,
37
+ "accuracy@10": 0.887719298245614,
38
+ "ndcg@10": 0.7663671365613799,
39
+ "mrr@10": 0.7268944351619795
40
+ }
41
+ }
42
+ }
43
+ }
results/Retrieval/scores_jaqket.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.7328228714411557,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.5829145728643216,
9
+ "accuracy@3": 0.7849246231155779,
10
+ "accuracy@5": 0.8261306532663316,
11
+ "accuracy@10": 0.8613065326633166,
12
+ "ndcg@10": 0.731508011835382,
13
+ "mrr@10": 0.6888549892318742
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.314572864321608,
17
+ "accuracy@3": 0.4592964824120603,
18
+ "accuracy@5": 0.5236180904522613,
19
+ "accuracy@10": 0.6100502512562814,
20
+ "ndcg@10": 0.45425172193082125,
21
+ "mrr@10": 0.4054387014437263
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.5748743718592965,
25
+ "accuracy@3": 0.7849246231155779,
26
+ "accuracy@5": 0.8301507537688442,
27
+ "accuracy@10": 0.8703517587939699,
28
+ "ndcg@10": 0.7322414692489264,
29
+ "mrr@10": 0.6869342745473402
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "euclidean_distance": {
34
+ "accuracy@1": 0.5707121364092277,
35
+ "accuracy@3": 0.7823470411233701,
36
+ "accuracy@5": 0.8445336008024072,
37
+ "accuracy@10": 0.8786359077231695,
38
+ "ndcg@10": 0.7328228714411557,
39
+ "mrr@10": 0.6850639219245043
40
+ }
41
+ }
42
+ }
43
+ }
results/Retrieval/scores_mrtydi.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.4743228662069064,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.3933189655172414,
9
+ "accuracy@3": 0.5711206896551724,
10
+ "accuracy@5": 0.6336206896551724,
11
+ "accuracy@10": 0.7047413793103449,
12
+ "ndcg@10": 0.5454869459262537,
13
+ "mrr@10": 0.4949580083470164
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.15193965517241378,
17
+ "accuracy@3": 0.26185344827586204,
18
+ "accuracy@5": 0.3114224137931034,
19
+ "accuracy@10": 0.3771551724137931,
20
+ "ndcg@10": 0.2578188772550815,
21
+ "mrr@10": 0.22044848111658447
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.39655172413793105,
25
+ "accuracy@3": 0.5754310344827587,
26
+ "accuracy@5": 0.6325431034482759,
27
+ "accuracy@10": 0.7036637931034483,
28
+ "ndcg@10": 0.5474573216533163,
29
+ "mrr@10": 0.49769387999452624
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "euclidean_distance": {
34
+ "accuracy@1": 0.3402777777777778,
35
+ "accuracy@3": 0.5333333333333333,
36
+ "accuracy@5": 0.6097222222222223,
37
+ "accuracy@10": 0.6805555555555556,
38
+ "ndcg@10": 0.4743228662069064,
39
+ "mrr@10": 0.4500749559082889
40
+ }
41
+ }
42
+ }
43
+ }
results/Retrieval/scores_nlp_journal_abs_intro.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.9940302632170871,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 1.0,
9
+ "accuracy@3": 1.0,
10
+ "accuracy@5": 1.0,
11
+ "accuracy@10": 1.0,
12
+ "ndcg@10": 1.0,
13
+ "mrr@10": 1.0
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.819672131147541,
17
+ "accuracy@3": 0.9426229508196722,
18
+ "accuracy@5": 0.9672131147540983,
19
+ "accuracy@10": 0.9836065573770492,
20
+ "ndcg@10": 0.9085710688150764,
21
+ "mrr@10": 0.8836976320582878
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 1.0,
25
+ "accuracy@3": 1.0,
26
+ "accuracy@5": 1.0,
27
+ "accuracy@10": 1.0,
28
+ "ndcg@10": 1.0,
29
+ "mrr@10": 1.0
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.9898373983739838,
35
+ "accuracy@3": 0.9959349593495935,
36
+ "accuracy@5": 0.9959349593495935,
37
+ "accuracy@10": 0.9979674796747967,
38
+ "ndcg@10": 0.9940302632170871,
39
+ "mrr@10": 0.992773261065944
40
+ }
41
+ }
42
+ }
43
+ }
results/Retrieval/scores_nlp_journal_title_abs.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.9812952838148481,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.9590163934426229,
9
+ "accuracy@3": 0.9836065573770492,
10
+ "accuracy@5": 1.0,
11
+ "accuracy@10": 1.0,
12
+ "ndcg@10": 0.9812321198854286,
13
+ "mrr@10": 0.975
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.680327868852459,
17
+ "accuracy@3": 0.8852459016393442,
18
+ "accuracy@5": 0.9344262295081968,
19
+ "accuracy@10": 0.9754098360655737,
20
+ "ndcg@10": 0.8353833079929985,
21
+ "mrr@10": 0.7894320843091334
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.9590163934426229,
25
+ "accuracy@3": 0.9836065573770492,
26
+ "accuracy@5": 1.0,
27
+ "accuracy@10": 1.0,
28
+ "ndcg@10": 0.9812321198854286,
29
+ "mrr@10": 0.975
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.959349593495935,
35
+ "accuracy@3": 0.9939024390243902,
36
+ "accuracy@5": 0.9939024390243902,
37
+ "accuracy@10": 0.9959349593495935,
38
+ "ndcg@10": 0.9812952838148481,
39
+ "mrr@10": 0.9762388695315525
40
+ }
41
+ }
42
+ }
43
+ }
results/Retrieval/scores_nlp_journal_title_intro.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.9645142540656014,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.9426229508196722,
9
+ "accuracy@3": 0.9836065573770492,
10
+ "accuracy@5": 0.9918032786885246,
11
+ "accuracy@10": 1.0,
12
+ "ndcg@10": 0.9724502516030613,
13
+ "mrr@10": 0.9634562841530055
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.8278688524590164,
17
+ "accuracy@3": 0.9262295081967213,
18
+ "accuracy@5": 0.9426229508196722,
19
+ "accuracy@10": 0.9590163934426229,
20
+ "ndcg@10": 0.8978665647400809,
21
+ "mrr@10": 0.8777322404371585
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.9344262295081968,
25
+ "accuracy@3": 0.9836065573770492,
26
+ "accuracy@5": 0.9918032786885246,
27
+ "accuracy@10": 0.9918032786885246,
28
+ "ndcg@10": 0.9668393079701575,
29
+ "mrr@10": 0.9583333333333334
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.9288617886178862,
35
+ "accuracy@3": 0.9817073170731707,
36
+ "accuracy@5": 0.9878048780487805,
37
+ "accuracy@10": 0.991869918699187,
38
+ "ndcg@10": 0.9645142540656014,
39
+ "mrr@10": 0.9553184281842817
40
+ }
41
+ }
42
+ }
43
+ }
results/STS/scores_jsick.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "spearman",
3
+ "metric_value": 0.7464955416231873,
4
+ "details": {
5
+ "optimal_similarity_metric": "manhatten_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "pearson": 0.7836218434851538,
9
+ "spearman": 0.756430688801211
10
+ },
11
+ "manhatten_distance": {
12
+ "pearson": 0.7923932174397492,
13
+ "spearman": 0.7607985259507607
14
+ },
15
+ "euclidean_distance": {
16
+ "pearson": 0.7923932174397492,
17
+ "spearman": 0.7607985259507607
18
+ },
19
+ "dot_score": {
20
+ "pearson": 0.5635997924106966,
21
+ "spearman": 0.5248804985646915
22
+ }
23
+ },
24
+ "test_scores": {
25
+ "manhatten_distance": {
26
+ "pearson": 0.7817941273703908,
27
+ "spearman": 0.7464955416231873
28
+ }
29
+ }
30
+ }
31
+ }
results/STS/scores_jsts.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "spearman",
3
+ "metric_value": 0.8385298782229563,
4
+ "details": {
5
+ "optimal_similarity_metric": "manhatten_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "pearson": 0.8486043626272783,
9
+ "spearman": 0.8120034758535889
10
+ },
11
+ "manhatten_distance": {
12
+ "pearson": 0.855291696445933,
13
+ "spearman": 0.8162534021929027
14
+ },
15
+ "euclidean_distance": {
16
+ "pearson": 0.855291696445933,
17
+ "spearman": 0.8162534021929027
18
+ },
19
+ "dot_score": {
20
+ "pearson": 0.6439197584013935,
21
+ "spearman": 0.5839306171056204
22
+ }
23
+ },
24
+ "test_scores": {
25
+ "manhatten_distance": {
26
+ "pearson": 0.8750297182135832,
27
+ "spearman": 0.8385298782229563
28
+ }
29
+ }
30
+ }
31
+ }
results/summary.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "Classification": {
3
+ "amazon_counterfactual_classification": {
4
+ "macro_f1": 0.8076989283604759
5
+ },
6
+ "amazon_review_classification": {
7
+ "macro_f1": 0.6023266627293248
8
+ },
9
+ "massive_intent_classification": {
10
+ "macro_f1": 0.7927230771632646
11
+ },
12
+ "massive_scenario_classification": {
13
+ "macro_f1": 0.8836398132177599
14
+ }
15
+ },
16
+ "Reranking": {
17
+ "esci": {
18
+ "ndcg@10": 0.9331356704615785
19
+ }
20
+ },
21
+ "Retrieval": {
22
+ "jagovfaqs_22k": {
23
+ "ndcg@10": 0.7663671365613799
24
+ },
25
+ "jaqket": {
26
+ "ndcg@10": 0.7328228714411557
27
+ },
28
+ "mrtydi": {
29
+ "ndcg@10": 0.4743228662069064
30
+ },
31
+ "nlp_journal_abs_intro": {
32
+ "ndcg@10": 0.9940302632170871
33
+ },
34
+ "nlp_journal_title_abs": {
35
+ "ndcg@10": 0.9812952838148481
36
+ },
37
+ "nlp_journal_title_intro": {
38
+ "ndcg@10": 0.9645142540656014
39
+ }
40
+ },
41
+ "STS": {
42
+ "jsick": {
43
+ "spearman": 0.7464955416231873
44
+ },
45
+ "jsts": {
46
+ "spearman": 0.8385298782229563
47
+ }
48
+ },
49
+ "Clustering": {
50
+ "livedoor_news": {
51
+ "v_measure_score": 0.5939535754736538
52
+ },
53
+ "mewsc16": {
54
+ "v_measure_score": 0.5133038855338062
55
+ }
56
+ },
57
+ "PairClassification": {
58
+ "paws_x_ja": {
59
+ "binary_f1": 0.6225736879942487
60
+ }
61
+ }
62
+ }