--- language: - ja tags: - sentence-similarity - feature-extraction base_model: sbintuitions/modernbert-ja-310m widget: [] pipeline_tag: sentence-similarity license: apache-2.0 datasets: - cl-nagoya/ruri-v3-dataset-pt --- # Ruri: Japanese General Text Embeddings **⚠️Notes:** **This model is a pretrained version and has not been fine-tuned.** For the fine-tuned version, please use [cl-nagoya/ruri-v3-310m](https://huggingface.co/cl-nagoya/ruri-v3-310m)! ## Fine-tuned Model Series **Ruri v3** is a general-purpose Japanese text embedding model built on top of [**ModernBERT-Ja**](https://huggingface.co/collections/sbintuitions/modernbert-ja-67b68fe891132877cf67aa0a). We provide Ruri-v3 in several model sizes. Below is a summary of each model. |ID| #Param. | #Param.
w/o Emb.|Dim.|#Layers|Avg. JMTEB| |-|-|-|-|-|-| |[cl-nagoya/ruri-v3-30m](https://huggingface.co/cl-nagoya/ruri-v3-30m)|37M|10M|256|10|74.51| |[cl-nagoya/ruri-v3-70m](https://huggingface.co/cl-nagoya/ruri-v3-70m)|70M|31M|384|13|75.48| |[cl-nagoya/ruri-v3-130m](https://huggingface.co/cl-nagoya/ruri-v3-130m)|132M|80M|512|19|76.55| |[cl-nagoya/ruri-v3-310m](https://huggingface.co/cl-nagoya/ruri-v3-310m)|315M|236M|768|25|77.24| ## Usage You can use our models directly with the transformers library v4.48.0 or higher: ```bash pip install -U "transformers>=4.48.0" sentence-transformers ``` Additionally, if your GPUs support Flash Attention 2, we recommend using our models with Flash Attention 2. ``` pip install flash-attn --no-build-isolation ``` Then you can load this model and run inference. ```python import torch.nn.functional as F from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("cl-nagoya/ruri-v3-pt-310m") # Ruri v3 employs a 1+3 prefix scheme to distinguish between different types of text inputs: # "" (empty string) is used for encoding semantic meaning. # "トピック: " is used for classification, clustering, and encoding topical information. # "検索クエリ: " is used for queries in retrieval tasks. # "検索文書: " is used for documents to be retrieved. sentences = [ "川べりでサーフボードを持った人たちがいます", "サーファーたちが川べりに立っています", "トピック: 瑠璃色のサーファー", "検索クエリ: 瑠璃色はどんな色?", "検索文書: 瑠璃色(るりいろ)は、紫みを帯びた濃い青。名は、半貴石の瑠璃(ラピスラズリ、英: lapis lazuli)による。JIS慣用色名では「こい紫みの青」(略号 dp-pB)と定義している[1][2]。", ] embeddings = model.encode(sentences, convert_to_tensor=True) print(embeddings.size()) # [5, 768] similarities = F.cosine_similarity(embeddings.unsqueeze(0), embeddings.unsqueeze(1), dim=2) print(similarities) ``` ## Citation ```bibtex @misc{ Ruri, title={{Ruri: Japanese General Text Embeddings}}, author={Hayato Tsukagoshi and Ryohei Sasano}, year={2024}, eprint={2409.07737}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2409.07737}, } ``` ## License This model is published under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).