--- license: cc-by-nc-4.0 datasets: - clane9/NSD-Flat --- # Model card for `boldgpt_small_patch10.cont` ![Example training predictions](example.png) A Vision Transformer (ViT) model trained on BOLD activation maps from [NSD-Flat](https://huggingface.co/datasets/clane9/NSD-Flat). The training objective was to auto-regressively predict the next patch with shuffled patch order and MSE loss. This model was trained using `shared1000` as the held out validation set. ## Dependencies - [boldGPT](https://github.com/clane9/boldGPT) ## Usage ```python from boldgpt.data import ActivityTransform from boldgpt.models import create_model from datasets import load_dataset model = create_model("boldgpt_small_patch10.cont", pretrained=True) dataset = load_dataset("clane9/NSD-Flat", split="train") dataset.set_format("torch") transform = ActivityTransform() batch = dataset[:1] batch["activity"] = transform(batch["activity"]) # output: (B, N + 1, D) predicted next patches output, state = model(batch) ``` ## Reproducing - Training command: ```bash torchrun --standalone --nproc_per_node=4 \ scripts/train.py \ --out_dir results \ --model boldgpt_small_patch10 \ --no_cat --shuffle --epochs 1000 --bs 512 \ --workers 0 --amp --compile --wandb ``` - Commit: `e0b29adc8d5b3ed2f1a555d7de4754ba96a3bb3e`