Update README.md
Browse files
README.md
CHANGED
|
@@ -15,11 +15,9 @@ base_model:
|
|
| 15 |
- facebook/w2v-bert-2.0
|
| 16 |
---
|
| 17 |
|
| 18 |
-
# Model Card
|
| 19 |
-
|
| 20 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
| 21 |
-
|
| 22 |
|
|
|
|
| 23 |
|
| 24 |
## Model Details
|
| 25 |
|
|
@@ -38,37 +36,98 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
| 38 |
|
| 39 |
<!-- Provide the basic links for the model. -->
|
| 40 |
|
| 41 |
-
- **
|
| 42 |
-
- **Paper [optional]:** [More Information Needed]
|
| 43 |
-
- **Demo [optional]:** [More Information Needed]
|
| 44 |
-
|
| 45 |
-
## Uses
|
| 46 |
|
| 47 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 48 |
|
| 49 |
### Direct Use
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 70 |
-
|
| 71 |
-
[More Information Needed]
|
| 72 |
|
| 73 |
### Recommendations
|
| 74 |
|
|
@@ -101,13 +160,11 @@ Use the code below to get started with the model.
|
|
| 101 |
|
| 102 |
#### Training Hyperparameters
|
| 103 |
|
| 104 |
-
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
[More Information Needed]
|
| 111 |
|
| 112 |
## Evaluation
|
| 113 |
|
|
@@ -115,94 +172,12 @@ Use the code below to get started with the model.
|
|
| 115 |
|
| 116 |
### Testing Data, Factors & Metrics
|
| 117 |
|
| 118 |
-
#### Testing Data
|
| 119 |
-
|
| 120 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 121 |
-
|
| 122 |
-
[More Information Needed]
|
| 123 |
-
|
| 124 |
-
#### Factors
|
| 125 |
-
|
| 126 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 127 |
-
|
| 128 |
-
[More Information Needed]
|
| 129 |
-
|
| 130 |
-
#### Metrics
|
| 131 |
-
|
| 132 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 133 |
-
|
| 134 |
-
[More Information Needed]
|
| 135 |
-
|
| 136 |
-
### Results
|
| 137 |
-
|
| 138 |
-
[More Information Needed]
|
| 139 |
|
| 140 |
#### Summary
|
| 141 |
|
| 142 |
|
| 143 |
|
| 144 |
-
## Model Examination [optional]
|
| 145 |
-
|
| 146 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 147 |
-
|
| 148 |
-
[More Information Needed]
|
| 149 |
-
|
| 150 |
-
## Environmental Impact
|
| 151 |
-
|
| 152 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 153 |
-
|
| 154 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 155 |
-
|
| 156 |
-
- **Hardware Type:** [More Information Needed]
|
| 157 |
-
- **Hours used:** [More Information Needed]
|
| 158 |
-
- **Cloud Provider:** [More Information Needed]
|
| 159 |
-
- **Compute Region:** [More Information Needed]
|
| 160 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 161 |
-
|
| 162 |
-
## Technical Specifications [optional]
|
| 163 |
-
|
| 164 |
-
### Model Architecture and Objective
|
| 165 |
-
|
| 166 |
-
[More Information Needed]
|
| 167 |
-
|
| 168 |
-
### Compute Infrastructure
|
| 169 |
-
|
| 170 |
-
[More Information Needed]
|
| 171 |
-
|
| 172 |
-
#### Hardware
|
| 173 |
-
|
| 174 |
-
[More Information Needed]
|
| 175 |
-
|
| 176 |
-
#### Software
|
| 177 |
-
|
| 178 |
-
[More Information Needed]
|
| 179 |
-
|
| 180 |
-
## Citation [optional]
|
| 181 |
-
|
| 182 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 183 |
-
|
| 184 |
-
**BibTeX:**
|
| 185 |
-
|
| 186 |
-
[More Information Needed]
|
| 187 |
-
|
| 188 |
-
**APA:**
|
| 189 |
-
|
| 190 |
-
[More Information Needed]
|
| 191 |
-
|
| 192 |
-
## Glossary [optional]
|
| 193 |
-
|
| 194 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 195 |
-
|
| 196 |
-
[More Information Needed]
|
| 197 |
-
|
| 198 |
-
## More Information [optional]
|
| 199 |
-
|
| 200 |
-
[More Information Needed]
|
| 201 |
-
|
| 202 |
-
## Model Card Authors [optional]
|
| 203 |
-
|
| 204 |
-
[More Information Needed]
|
| 205 |
|
| 206 |
-
##
|
| 207 |
|
| 208 |
-
|
|
|
|
| 15 |
- facebook/w2v-bert-2.0
|
| 16 |
---
|
| 17 |
|
| 18 |
+
# Model Card
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
This model annotates primary stress in words on 20ms frames.
|
| 21 |
|
| 22 |
## Model Details
|
| 23 |
|
|
|
|
| 36 |
|
| 37 |
<!-- Provide the basic links for the model. -->
|
| 38 |
|
| 39 |
+
- **Paper [optional]:** Coming soon
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
|
|
|
| 41 |
|
| 42 |
### Direct Use
|
| 43 |
|
| 44 |
+
The model is intended for data-driven analyses in primary stress position. ATM, it has been proven to work on 4 datasets in 3 languages.
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
## Example use
|
| 48 |
+
|
| 49 |
+
```python
|
| 50 |
+
import numpy as np
|
| 51 |
+
|
| 52 |
+
from datasets import Audio, Dataset
|
| 53 |
+
from transformers import AutoFeatureExtractor, Wav2Vec2BertForAudioFrameClassification
|
| 54 |
+
import torch
|
| 55 |
+
import numpy as np
|
| 56 |
+
|
| 57 |
+
if torch.cuda.is_available():
|
| 58 |
+
device = torch.device("cuda")
|
| 59 |
+
else:
|
| 60 |
+
device = torch.device("cpu")
|
| 61 |
+
|
| 62 |
+
model_name = "5roop/Wav2Vec2BertPrimaryStressAudioFrameClassifier"
|
| 63 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
| 64 |
+
model = Wav2Vec2BertForAudioFrameClassification.from_pretrained(model_name).to(device)
|
| 65 |
+
# Path to the file, containing the word to be annotated:
|
| 66 |
+
f = "wavs/word.wav"
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def frames_to_intervals(frames: list[int]) -> list[tuple[float]]:
|
| 70 |
+
from itertools import pairwise
|
| 71 |
+
import pandas as pd
|
| 72 |
+
|
| 73 |
+
results = []
|
| 74 |
+
ndf = pd.DataFrame(
|
| 75 |
+
data={
|
| 76 |
+
"time_s": [0.020 * i for i in range(len(frames))],
|
| 77 |
+
"frames": frames,
|
| 78 |
+
}
|
| 79 |
+
)
|
| 80 |
+
ndf = ndf.dropna()
|
| 81 |
+
indices_of_change = ndf.frames.diff()[ndf.frames.diff() != 0].index.values
|
| 82 |
+
for si, ei in pairwise(indices_of_change):
|
| 83 |
+
if ndf.loc[si : ei - 1, "frames"].mode()[0] == 0:
|
| 84 |
+
pass
|
| 85 |
+
else:
|
| 86 |
+
results.append(
|
| 87 |
+
(round(ndf.loc[si, "time_s"], 3), round(ndf.loc[ei - 1, "time_s"], 3))
|
| 88 |
+
)
|
| 89 |
+
if results == []:
|
| 90 |
+
return None
|
| 91 |
+
# Post-processing: if multiple regions were returned, only the longest should be taken:
|
| 92 |
+
if len(results) > 1:
|
| 93 |
+
results = sorted(results, key=lambda t: t[1]-t[0], reverse=True)
|
| 94 |
+
return results[0:1]
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def evaluator(chunks):
|
| 98 |
+
sampling_rate = chunks["audio"][0]["sampling_rate"]
|
| 99 |
+
with torch.no_grad():
|
| 100 |
+
inputs = feature_extractor(
|
| 101 |
+
[i["array"] for i in chunks["audio"]],
|
| 102 |
+
return_tensors="pt",
|
| 103 |
+
sampling_rate=sampling_rate,
|
| 104 |
+
).to(device)
|
| 105 |
+
logits = model(**inputs).logits
|
| 106 |
+
y_pred_raw = np.array(logits.cpu())
|
| 107 |
+
y_pred = y_pred_raw.argmax(axis=-1)
|
| 108 |
+
primary_stress = [frames_to_intervals(i) for i in y_pred]
|
| 109 |
+
return {
|
| 110 |
+
"y_pred": y_pred,
|
| 111 |
+
"y_pred_logits": y_pred_raw,
|
| 112 |
+
"primary_stress": primary_stress,
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
# Create a dataset with a single instance and map our evaluator function on it:
|
| 116 |
+
ds = Dataset.from_dict({"audio": [f]}).cast_column("audio", Audio(16000, mono=True))
|
| 117 |
+
ds = ds.map(evaluator, batched=True, batch_size=1) # Adjust batch size according to your hardware specs
|
| 118 |
+
print(ds["y_pred"][0])
|
| 119 |
+
# Outputs: [0, 0, 1, 1, 1, 1, 1, ...]
|
| 120 |
+
print(ds["y_pred_logits"][0])
|
| 121 |
+
# Outputs:
|
| 122 |
+
# [[ 0.89419061, -0.77746612],
|
| 123 |
+
# [ 0.44213724, -0.34862748],
|
| 124 |
+
# [-0.08605709, 0.13012762],
|
| 125 |
+
# ....
|
| 126 |
+
print(ds["prosodic_units"][0])
|
| 127 |
+
# Outputs: [0.34, 0.4]
|
| 128 |
+
|
| 129 |
+
```
|
| 130 |
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
### Recommendations
|
| 133 |
|
|
|
|
| 160 |
|
| 161 |
#### Training Hyperparameters
|
| 162 |
|
| 163 |
+
- Learning rate: 1e-5
|
| 164 |
+
- Batch size: 32
|
| 165 |
+
- Number of epochs: 20
|
| 166 |
+
- Weight decay: 0.01
|
| 167 |
+
- Gradient accumulation steps: 1
|
|
|
|
|
|
|
| 168 |
|
| 169 |
## Evaluation
|
| 170 |
|
|
|
|
| 172 |
|
| 173 |
### Testing Data, Factors & Metrics
|
| 174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
#### Summary
|
| 177 |
|
| 178 |
|
| 179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
+
## Citation
|
| 182 |
|
| 183 |
+
Coming soon
|