pushing model
Browse files- .gitattributes +3 -0
- README.md +96 -0
- cleanba_impala_envpool_machado_atari_wrapper.py +774 -0
- cleanba_impala_envpool_machado_atari_wrapper_a0_l1_d4.cleanrl_model +3 -0
- events.out.tfevents.1679759582.ip-26-0-137-115 +3 -0
- poetry.lock +0 -0
- pyproject.toml +34 -0
- replay.mp4 +3 -0
- videos/DemonAttack-v5__cleanba_impala_envpool_machado_atari_wrapper_a0_l1_d4__2__5860dc6b-e85d-41d6-8d89-03026ebdb650-eval/0.mp4 +3 -0
    	
        .gitattributes
    CHANGED
    
    | @@ -32,3 +32,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text | |
| 32 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 33 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
|  | |
|  | |
|  | 
|  | |
| 32 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 33 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
            +
            videos/DemonAttack-v5__cleanba_impala_envpool_machado_atari_wrapper_a0_l1_d4__2__5860dc6b-e85d-41d6-8d89-03026ebdb650-eval/0.mp4 filter=lfs diff=lfs merge=lfs -text
         | 
| 36 | 
            +
            replay.mp4 filter=lfs diff=lfs merge=lfs -text
         | 
| 37 | 
            +
            cleanba_impala_envpool_machado_atari_wrapper_a0_l1_d4.cleanrl_model filter=lfs diff=lfs merge=lfs -text
         | 
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,96 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            tags:
         | 
| 3 | 
            +
            - DemonAttack-v5
         | 
| 4 | 
            +
            - deep-reinforcement-learning
         | 
| 5 | 
            +
            - reinforcement-learning
         | 
| 6 | 
            +
            - custom-implementation
         | 
| 7 | 
            +
            library_name: cleanrl
         | 
| 8 | 
            +
            model-index:
         | 
| 9 | 
            +
            - name: PPO
         | 
| 10 | 
            +
              results:
         | 
| 11 | 
            +
              - task:
         | 
| 12 | 
            +
                  type: reinforcement-learning
         | 
| 13 | 
            +
                  name: reinforcement-learning
         | 
| 14 | 
            +
                dataset:
         | 
| 15 | 
            +
                  name: DemonAttack-v5
         | 
| 16 | 
            +
                  type: DemonAttack-v5
         | 
| 17 | 
            +
                metrics:
         | 
| 18 | 
            +
                - type: mean_reward
         | 
| 19 | 
            +
                  value: 88149.00 +/- 42555.30
         | 
| 20 | 
            +
                  name: mean_reward
         | 
| 21 | 
            +
                  verified: false
         | 
| 22 | 
            +
            ---
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            # (CleanRL) **PPO** Agent Playing **DemonAttack-v5**
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            This is a trained model of a PPO agent playing DemonAttack-v5.
         | 
| 27 | 
            +
            The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
         | 
| 28 | 
            +
            found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_impala_envpool_machado_atari_wrapper_a0_l1_d4.py).
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            ## Get Started
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            To use this model, please install the `cleanrl` package with the following command:
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            ```
         | 
| 35 | 
            +
            pip install "cleanrl[jax,envpool,atari]"
         | 
| 36 | 
            +
            python -m cleanrl_utils.enjoy --exp-name cleanba_impala_envpool_machado_atari_wrapper_a0_l1_d4 --env-id DemonAttack-v5
         | 
| 37 | 
            +
            ```
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
         | 
| 40 | 
            +
             | 
| 41 | 
            +
             | 
| 42 | 
            +
            ## Command to reproduce the training
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            ```bash
         | 
| 45 | 
            +
            curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-cleanba_impala_envpool_machado_atari_wrapper_a0_l1_d4-seed2/raw/main/cleanba_impala_envpool_machado_atari_wrapper.py
         | 
| 46 | 
            +
            curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-cleanba_impala_envpool_machado_atari_wrapper_a0_l1_d4-seed2/raw/main/pyproject.toml
         | 
| 47 | 
            +
            curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-cleanba_impala_envpool_machado_atari_wrapper_a0_l1_d4-seed2/raw/main/poetry.lock
         | 
| 48 | 
            +
            poetry install --all-extras
         | 
| 49 | 
            +
            python cleanba_impala_envpool_machado_atari_wrapper.py --exp-name cleanba_impala_envpool_machado_atari_wrapper_a0_l1_d4 --distributed --learner-device-ids 1 --local-num-envs 30 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id DemonAttack-v5 --seed 2
         | 
| 50 | 
            +
            ```
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            # Hyperparameters
         | 
| 53 | 
            +
            ```python
         | 
| 54 | 
            +
            {'actor_device_ids': [0],
         | 
| 55 | 
            +
             'actor_devices': ['gpu:0'],
         | 
| 56 | 
            +
             'anneal_lr': True,
         | 
| 57 | 
            +
             'async_batch_size': 30,
         | 
| 58 | 
            +
             'async_update': 1,
         | 
| 59 | 
            +
             'batch_size': 2400,
         | 
| 60 | 
            +
             'capture_video': False,
         | 
| 61 | 
            +
             'cuda': True,
         | 
| 62 | 
            +
             'distributed': True,
         | 
| 63 | 
            +
             'ent_coef': 0.01,
         | 
| 64 | 
            +
             'env_id': 'DemonAttack-v5',
         | 
| 65 | 
            +
             'exp_name': 'cleanba_impala_envpool_machado_atari_wrapper_a0_l1_d4',
         | 
| 66 | 
            +
             'gamma': 0.99,
         | 
| 67 | 
            +
             'global_learner_decices': ['gpu:1', 'gpu:3', 'gpu:5', 'gpu:7'],
         | 
| 68 | 
            +
             'hf_entity': 'cleanrl',
         | 
| 69 | 
            +
             'learner_device_ids': [1],
         | 
| 70 | 
            +
             'learner_devices': ['gpu:1'],
         | 
| 71 | 
            +
             'learning_rate': 0.00025,
         | 
| 72 | 
            +
             'local_batch_size': 600,
         | 
| 73 | 
            +
             'local_minibatch_size': 300,
         | 
| 74 | 
            +
             'local_num_envs': 30,
         | 
| 75 | 
            +
             'local_rank': 0,
         | 
| 76 | 
            +
             'max_grad_norm': 0.5,
         | 
| 77 | 
            +
             'minibatch_size': 1200,
         | 
| 78 | 
            +
             'num_envs': 120,
         | 
| 79 | 
            +
             'num_minibatches': 2,
         | 
| 80 | 
            +
             'num_steps': 20,
         | 
| 81 | 
            +
             'num_updates': 20833,
         | 
| 82 | 
            +
             'profile': False,
         | 
| 83 | 
            +
             'save_model': True,
         | 
| 84 | 
            +
             'seed': 2,
         | 
| 85 | 
            +
             'target_kl': None,
         | 
| 86 | 
            +
             'test_actor_learner_throughput': False,
         | 
| 87 | 
            +
             'torch_deterministic': True,
         | 
| 88 | 
            +
             'total_timesteps': 50000000,
         | 
| 89 | 
            +
             'track': True,
         | 
| 90 | 
            +
             'upload_model': True,
         | 
| 91 | 
            +
             'vf_coef': 0.5,
         | 
| 92 | 
            +
             'wandb_entity': None,
         | 
| 93 | 
            +
             'wandb_project_name': 'cleanba',
         | 
| 94 | 
            +
             'world_size': 4}
         | 
| 95 | 
            +
            ```
         | 
| 96 | 
            +
                
         | 
    	
        cleanba_impala_envpool_machado_atari_wrapper.py
    ADDED
    
    | @@ -0,0 +1,774 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import argparse
         | 
| 2 | 
            +
            import os
         | 
| 3 | 
            +
            import random
         | 
| 4 | 
            +
            import time
         | 
| 5 | 
            +
            import uuid
         | 
| 6 | 
            +
            from collections import deque
         | 
| 7 | 
            +
            from distutils.util import strtobool
         | 
| 8 | 
            +
            from functools import partial
         | 
| 9 | 
            +
            from typing import Sequence
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            os.environ[
         | 
| 12 | 
            +
                "XLA_PYTHON_CLIENT_MEM_FRACTION"
         | 
| 13 | 
            +
            ] = "0.6"  # see https://github.com/google/jax/discussions/6332#discussioncomment-1279991
         | 
| 14 | 
            +
            os.environ["XLA_FLAGS"] = "--xla_cpu_multi_thread_eigen=false " "intra_op_parallelism_threads=1"
         | 
| 15 | 
            +
            import queue
         | 
| 16 | 
            +
            import threading
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            import envpool
         | 
| 19 | 
            +
            import flax
         | 
| 20 | 
            +
            import flax.linen as nn
         | 
| 21 | 
            +
            import gym
         | 
| 22 | 
            +
            import jax
         | 
| 23 | 
            +
            import jax.numpy as jnp
         | 
| 24 | 
            +
            import numpy as np
         | 
| 25 | 
            +
            import optax
         | 
| 26 | 
            +
            import rlax
         | 
| 27 | 
            +
            from flax.linen.initializers import constant, orthogonal
         | 
| 28 | 
            +
            from flax.training.train_state import TrainState
         | 
| 29 | 
            +
            from tensorboardX import SummaryWriter
         | 
| 30 | 
            +
             | 
| 31 | 
            +
             | 
| 32 | 
            +
            def parse_args():
         | 
| 33 | 
            +
                # fmt: off
         | 
| 34 | 
            +
                parser = argparse.ArgumentParser()
         | 
| 35 | 
            +
                parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
         | 
| 36 | 
            +
                    help="the name of this experiment")
         | 
| 37 | 
            +
                parser.add_argument("--seed", type=int, default=1,
         | 
| 38 | 
            +
                    help="seed of the experiment")
         | 
| 39 | 
            +
                parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
         | 
| 40 | 
            +
                    help="if toggled, `torch.backends.cudnn.deterministic=False`")
         | 
| 41 | 
            +
                parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
         | 
| 42 | 
            +
                    help="if toggled, cuda will be enabled by default")
         | 
| 43 | 
            +
                parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
         | 
| 44 | 
            +
                    help="if toggled, this experiment will be tracked with Weights and Biases")
         | 
| 45 | 
            +
                parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
         | 
| 46 | 
            +
                    help="the wandb's project name")
         | 
| 47 | 
            +
                parser.add_argument("--wandb-entity", type=str, default=None,
         | 
| 48 | 
            +
                    help="the entity (team) of wandb's project")
         | 
| 49 | 
            +
                parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
         | 
| 50 | 
            +
                    help="whether to capture videos of the agent performances (check out `videos` folder)")
         | 
| 51 | 
            +
                parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
         | 
| 52 | 
            +
                    help="whether to save model into the `runs/{run_name}` folder")
         | 
| 53 | 
            +
                parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
         | 
| 54 | 
            +
                    help="whether to upload the saved model to huggingface")
         | 
| 55 | 
            +
                parser.add_argument("--hf-entity", type=str, default="",
         | 
| 56 | 
            +
                    help="the user or org name of the model repository from the Hugging Face Hub")
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                # Algorithm specific arguments
         | 
| 59 | 
            +
                parser.add_argument("--env-id", type=str, default="Breakout-v5",
         | 
| 60 | 
            +
                    help="the id of the environment")
         | 
| 61 | 
            +
                parser.add_argument("--total-timesteps", type=int, default=50000000,
         | 
| 62 | 
            +
                    help="total timesteps of the experiments")
         | 
| 63 | 
            +
                parser.add_argument("--learning-rate", type=float, default=2.5e-4,
         | 
| 64 | 
            +
                    help="the learning rate of the optimizer")
         | 
| 65 | 
            +
                parser.add_argument("--local-num-envs", type=int, default=60,
         | 
| 66 | 
            +
                    help="the number of parallel game environments")
         | 
| 67 | 
            +
                parser.add_argument("--num-steps", type=int, default=20,
         | 
| 68 | 
            +
                    help="the number of steps to run in each environment per policy rollout")
         | 
| 69 | 
            +
                parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
         | 
| 70 | 
            +
                    help="Toggle learning rate annealing for policy and value networks")
         | 
| 71 | 
            +
                parser.add_argument("--gamma", type=float, default=0.99,
         | 
| 72 | 
            +
                    help="the discount factor gamma")
         | 
| 73 | 
            +
                parser.add_argument("--num-minibatches", type=int, default=2,
         | 
| 74 | 
            +
                    help="the number of mini-batches")
         | 
| 75 | 
            +
                parser.add_argument("--ent-coef", type=float, default=0.01,
         | 
| 76 | 
            +
                    help="coefficient of the entropy")
         | 
| 77 | 
            +
                parser.add_argument("--vf-coef", type=float, default=0.5,
         | 
| 78 | 
            +
                    help="coefficient of the value function")
         | 
| 79 | 
            +
                parser.add_argument("--max-grad-norm", type=float, default=0.5,
         | 
| 80 | 
            +
                    help="the maximum norm for the gradient clipping")
         | 
| 81 | 
            +
                parser.add_argument("--target-kl", type=float, default=None,
         | 
| 82 | 
            +
                    help="the target KL divergence threshold")
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                parser.add_argument("--actor-device-ids", type=int, nargs="+", default=[0], # type is actually List[int]
         | 
| 85 | 
            +
                    help="the device ids that actor workers will use (currently only support 1 device)")
         | 
| 86 | 
            +
                parser.add_argument("--learner-device-ids", type=int, nargs="+", default=[0], # type is actually List[int]
         | 
| 87 | 
            +
                    help="the device ids that learner workers will use")
         | 
| 88 | 
            +
                parser.add_argument("--distributed", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
         | 
| 89 | 
            +
                    help="whether to use `jax.distirbuted`")
         | 
| 90 | 
            +
                parser.add_argument("--profile", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
         | 
| 91 | 
            +
                    help="whether to call block_until_ready() for profiling")
         | 
| 92 | 
            +
                parser.add_argument("--test-actor-learner-throughput", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
         | 
| 93 | 
            +
                    help="whether to test actor-learner throughput by removing the actor-learner communication")
         | 
| 94 | 
            +
                args = parser.parse_args()
         | 
| 95 | 
            +
                args.async_batch_size = args.local_num_envs # local_num_envs must be equal to async_batch_size due to limitation of `rlax`
         | 
| 96 | 
            +
                args.local_batch_size = int(args.local_num_envs * args.num_steps)
         | 
| 97 | 
            +
                args.local_minibatch_size = int(args.local_batch_size // args.num_minibatches)
         | 
| 98 | 
            +
                args.num_updates = args.total_timesteps // args.local_batch_size
         | 
| 99 | 
            +
                args.async_update = int(args.local_num_envs / args.async_batch_size)
         | 
| 100 | 
            +
                assert len(args.actor_device_ids) == 1, "only 1 actor_device_ids is supported now"
         | 
| 101 | 
            +
                # fmt: on
         | 
| 102 | 
            +
                return args
         | 
| 103 | 
            +
             | 
| 104 | 
            +
             | 
| 105 | 
            +
            ATARI_MAX_FRAMES = int(
         | 
| 106 | 
            +
                108000 / 4
         | 
| 107 | 
            +
            )  # 108000 is the max number of frames in an Atari game, divided by 4 to account for frame skipping
         | 
| 108 | 
            +
             | 
| 109 | 
            +
             | 
| 110 | 
            +
            def make_env(env_id, seed, num_envs, async_batch_size=1):
         | 
| 111 | 
            +
                def thunk():
         | 
| 112 | 
            +
                    envs = envpool.make(
         | 
| 113 | 
            +
                        env_id,
         | 
| 114 | 
            +
                        env_type="gym",
         | 
| 115 | 
            +
                        num_envs=num_envs,
         | 
| 116 | 
            +
                        batch_size=async_batch_size,
         | 
| 117 | 
            +
                        episodic_life=False,  # Machado et al. 2017 (Revisitng ALE: Eval protocols) p. 6
         | 
| 118 | 
            +
                        repeat_action_probability=0.25,  # Machado et al. 2017 (Revisitng ALE: Eval protocols) p. 12
         | 
| 119 | 
            +
                        noop_max=1,  # Machado et al. 2017 (Revisitng ALE: Eval protocols) p. 12 (no-op is deprecated in favor of sticky action, right?)
         | 
| 120 | 
            +
                        full_action_space=True,  # Machado et al. 2017 (Revisitng ALE: Eval protocols) Tab. 5
         | 
| 121 | 
            +
                        max_episode_steps=ATARI_MAX_FRAMES,  # Hessel et al. 2018 (Rainbow DQN), Table 3, Max frames per episode
         | 
| 122 | 
            +
                        reward_clip=True,
         | 
| 123 | 
            +
                        seed=seed,
         | 
| 124 | 
            +
                    )
         | 
| 125 | 
            +
                    envs.num_envs = num_envs
         | 
| 126 | 
            +
                    envs.single_action_space = envs.action_space
         | 
| 127 | 
            +
                    envs.single_observation_space = envs.observation_space
         | 
| 128 | 
            +
                    envs.is_vector_env = True
         | 
| 129 | 
            +
                    return envs
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                return thunk
         | 
| 132 | 
            +
             | 
| 133 | 
            +
             | 
| 134 | 
            +
            class ResidualBlock(nn.Module):
         | 
| 135 | 
            +
                channels: int
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                @nn.compact
         | 
| 138 | 
            +
                def __call__(self, x):
         | 
| 139 | 
            +
                    inputs = x
         | 
| 140 | 
            +
                    x = nn.relu(x)
         | 
| 141 | 
            +
                    x = nn.Conv(
         | 
| 142 | 
            +
                        self.channels,
         | 
| 143 | 
            +
                        kernel_size=(3, 3),
         | 
| 144 | 
            +
                    )(x)
         | 
| 145 | 
            +
                    x = nn.relu(x)
         | 
| 146 | 
            +
                    x = nn.Conv(
         | 
| 147 | 
            +
                        self.channels,
         | 
| 148 | 
            +
                        kernel_size=(3, 3),
         | 
| 149 | 
            +
                    )(x)
         | 
| 150 | 
            +
                    return x + inputs
         | 
| 151 | 
            +
             | 
| 152 | 
            +
             | 
| 153 | 
            +
            class ConvSequence(nn.Module):
         | 
| 154 | 
            +
                channels: int
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                @nn.compact
         | 
| 157 | 
            +
                def __call__(self, x):
         | 
| 158 | 
            +
                    x = nn.Conv(
         | 
| 159 | 
            +
                        self.channels,
         | 
| 160 | 
            +
                        kernel_size=(3, 3),
         | 
| 161 | 
            +
                    )(x)
         | 
| 162 | 
            +
                    x = nn.max_pool(x, window_shape=(3, 3), strides=(2, 2), padding="SAME")
         | 
| 163 | 
            +
                    x = ResidualBlock(self.channels)(x)
         | 
| 164 | 
            +
                    x = ResidualBlock(self.channels)(x)
         | 
| 165 | 
            +
                    return x
         | 
| 166 | 
            +
             | 
| 167 | 
            +
             | 
| 168 | 
            +
            class Network(nn.Module):
         | 
| 169 | 
            +
                channelss: Sequence[int] = (16, 32, 32)
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                @nn.compact
         | 
| 172 | 
            +
                def __call__(self, x):
         | 
| 173 | 
            +
                    x = jnp.transpose(x, (0, 2, 3, 1))
         | 
| 174 | 
            +
                    x = x / (255.0)
         | 
| 175 | 
            +
                    for channels in self.channelss:
         | 
| 176 | 
            +
                        x = ConvSequence(channels)(x)
         | 
| 177 | 
            +
                    x = nn.relu(x)
         | 
| 178 | 
            +
                    x = x.reshape((x.shape[0], -1))
         | 
| 179 | 
            +
                    x = nn.Dense(256, kernel_init=orthogonal(np.sqrt(2)), bias_init=constant(0.0))(x)
         | 
| 180 | 
            +
                    x = nn.relu(x)
         | 
| 181 | 
            +
                    return x
         | 
| 182 | 
            +
             | 
| 183 | 
            +
             | 
| 184 | 
            +
            class Critic(nn.Module):
         | 
| 185 | 
            +
                @nn.compact
         | 
| 186 | 
            +
                def __call__(self, x):
         | 
| 187 | 
            +
                    return nn.Dense(1, kernel_init=orthogonal(1), bias_init=constant(0.0))(x)
         | 
| 188 | 
            +
             | 
| 189 | 
            +
             | 
| 190 | 
            +
            class Actor(nn.Module):
         | 
| 191 | 
            +
                action_dim: int
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                @nn.compact
         | 
| 194 | 
            +
                def __call__(self, x):
         | 
| 195 | 
            +
                    return nn.Dense(self.action_dim, kernel_init=orthogonal(0.01), bias_init=constant(0.0))(x)
         | 
| 196 | 
            +
             | 
| 197 | 
            +
             | 
| 198 | 
            +
            @flax.struct.dataclass
         | 
| 199 | 
            +
            class AgentParams:
         | 
| 200 | 
            +
                network_params: flax.core.FrozenDict
         | 
| 201 | 
            +
                actor_params: flax.core.FrozenDict
         | 
| 202 | 
            +
                critic_params: flax.core.FrozenDict
         | 
| 203 | 
            +
             | 
| 204 | 
            +
             | 
| 205 | 
            +
            @partial(jax.jit, static_argnums=(3))
         | 
| 206 | 
            +
            def get_action(
         | 
| 207 | 
            +
                params: flax.core.FrozenDict,
         | 
| 208 | 
            +
                next_obs: np.ndarray,
         | 
| 209 | 
            +
                key: jax.random.PRNGKey,
         | 
| 210 | 
            +
                action_dim: int,
         | 
| 211 | 
            +
            ):
         | 
| 212 | 
            +
                next_obs = jnp.array(next_obs)
         | 
| 213 | 
            +
                hidden = Network().apply(params.network_params, next_obs)
         | 
| 214 | 
            +
                logits = Actor(action_dim).apply(params.actor_params, hidden)
         | 
| 215 | 
            +
                # sample action: Gumbel-softmax trick
         | 
| 216 | 
            +
                # see https://stats.stackexchange.com/questions/359442/sampling-from-a-categorical-distribution
         | 
| 217 | 
            +
                key, subkey = jax.random.split(key)
         | 
| 218 | 
            +
                u = jax.random.uniform(subkey, shape=logits.shape)
         | 
| 219 | 
            +
                action = jnp.argmax(logits - jnp.log(-jnp.log(u)), axis=1)
         | 
| 220 | 
            +
                return next_obs, action, logits, key
         | 
| 221 | 
            +
             | 
| 222 | 
            +
             | 
| 223 | 
            +
            def prepare_data(
         | 
| 224 | 
            +
                obs: list,
         | 
| 225 | 
            +
                dones: list,
         | 
| 226 | 
            +
                actions: list,
         | 
| 227 | 
            +
                logitss: list,
         | 
| 228 | 
            +
                firststeps: list,
         | 
| 229 | 
            +
                env_ids: list,
         | 
| 230 | 
            +
                rewards: list,
         | 
| 231 | 
            +
            ):
         | 
| 232 | 
            +
                obs = jnp.asarray(obs)
         | 
| 233 | 
            +
                dones = jnp.asarray(dones)
         | 
| 234 | 
            +
                actions = jnp.asarray(actions)
         | 
| 235 | 
            +
                logitss = jnp.asarray(logitss)
         | 
| 236 | 
            +
                firststeps = jnp.asarray(firststeps)
         | 
| 237 | 
            +
                env_ids = jnp.asarray(env_ids)
         | 
| 238 | 
            +
                rewards = jnp.asarray(rewards)
         | 
| 239 | 
            +
                return obs, dones, actions, logitss, firststeps, env_ids, rewards
         | 
| 240 | 
            +
             | 
| 241 | 
            +
             | 
| 242 | 
            +
            @jax.jit
         | 
| 243 | 
            +
            def make_bulk_array(
         | 
| 244 | 
            +
                obs: list,
         | 
| 245 | 
            +
                actions: list,
         | 
| 246 | 
            +
                logitss: list,
         | 
| 247 | 
            +
            ):
         | 
| 248 | 
            +
                obs = jnp.asarray(obs)
         | 
| 249 | 
            +
                actions = jnp.asarray(actions)
         | 
| 250 | 
            +
                logitss = jnp.asarray(logitss)
         | 
| 251 | 
            +
                return obs, actions, logitss
         | 
| 252 | 
            +
             | 
| 253 | 
            +
             | 
| 254 | 
            +
            def rollout(
         | 
| 255 | 
            +
                key: jax.random.PRNGKey,
         | 
| 256 | 
            +
                args,
         | 
| 257 | 
            +
                rollout_queue,
         | 
| 258 | 
            +
                params_queue: queue.Queue,
         | 
| 259 | 
            +
                writer,
         | 
| 260 | 
            +
                learner_devices,
         | 
| 261 | 
            +
            ):
         | 
| 262 | 
            +
                envs = make_env(args.env_id, args.seed + jax.process_index(), args.local_num_envs, args.async_batch_size)()
         | 
| 263 | 
            +
                len_actor_device_ids = len(args.actor_device_ids)
         | 
| 264 | 
            +
                global_step = 0
         | 
| 265 | 
            +
                # TRY NOT TO MODIFY: start the game
         | 
| 266 | 
            +
                start_time = time.time()
         | 
| 267 | 
            +
             | 
| 268 | 
            +
                # put data in the last index
         | 
| 269 | 
            +
                episode_returns = np.zeros((args.local_num_envs,), dtype=np.float32)
         | 
| 270 | 
            +
                returned_episode_returns = np.zeros((args.local_num_envs,), dtype=np.float32)
         | 
| 271 | 
            +
                episode_lengths = np.zeros((args.local_num_envs,), dtype=np.float32)
         | 
| 272 | 
            +
                returned_episode_lengths = np.zeros((args.local_num_envs,), dtype=np.float32)
         | 
| 273 | 
            +
                envs.async_reset()
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                params_queue_get_time = deque(maxlen=10)
         | 
| 276 | 
            +
                rollout_time = deque(maxlen=10)
         | 
| 277 | 
            +
                rollout_queue_put_time = deque(maxlen=10)
         | 
| 278 | 
            +
                actor_policy_version = 0
         | 
| 279 | 
            +
                obs = []
         | 
| 280 | 
            +
                dones = []
         | 
| 281 | 
            +
                actions = []
         | 
| 282 | 
            +
                logitss = []
         | 
| 283 | 
            +
                env_ids = []
         | 
| 284 | 
            +
                rewards = []
         | 
| 285 | 
            +
                truncations = []
         | 
| 286 | 
            +
                terminations = []
         | 
| 287 | 
            +
                firststeps = []  # first step of an episode
         | 
| 288 | 
            +
                for update in range(1, args.num_updates + 2):
         | 
| 289 | 
            +
                    # NOTE: This is a major difference from the sync version:
         | 
| 290 | 
            +
                    # at the end of the rollout phase, the sync version will have the next observation
         | 
| 291 | 
            +
                    # ready for the value bootstrap, but the async version will not have it.
         | 
| 292 | 
            +
                    # for this reason we do `num_steps + 1`` to get the extra states for value bootstrapping.
         | 
| 293 | 
            +
                    # but note that the extra states are not used for the loss computation in the next iteration,
         | 
| 294 | 
            +
                    # while the sync version will use the extra state for the loss computation.
         | 
| 295 | 
            +
                    update_time_start = time.time()
         | 
| 296 | 
            +
                    env_recv_time = 0
         | 
| 297 | 
            +
                    inference_time = 0
         | 
| 298 | 
            +
                    storage_time = 0
         | 
| 299 | 
            +
                    env_send_time = 0
         | 
| 300 | 
            +
             | 
| 301 | 
            +
                    num_steps_with_bootstrap = args.num_steps + 1 + int(len(obs) == 0)
         | 
| 302 | 
            +
                    # NOTE: `update != 2` is actually IMPORTANT — it allows us to start running policy collection
         | 
| 303 | 
            +
                    # concurrently with the learning process. It also ensures the actor's policy version is only 1 step
         | 
| 304 | 
            +
                    # behind the learner's policy version
         | 
| 305 | 
            +
                    params_queue_get_time_start = time.time()
         | 
| 306 | 
            +
                    if update != 2:
         | 
| 307 | 
            +
                        params = params_queue.get()
         | 
| 308 | 
            +
                        actor_policy_version += 1
         | 
| 309 | 
            +
                    params_queue_get_time.append(time.time() - params_queue_get_time_start)
         | 
| 310 | 
            +
                    writer.add_scalar("stats/params_queue_get_time", np.mean(params_queue_get_time), global_step)
         | 
| 311 | 
            +
                    rollout_time_start = time.time()
         | 
| 312 | 
            +
                    for _ in range(
         | 
| 313 | 
            +
                        args.async_update, (num_steps_with_bootstrap) * args.async_update
         | 
| 314 | 
            +
                    ):  # num_steps + 1 to get the states for value bootstrapping.
         | 
| 315 | 
            +
                        env_recv_time_start = time.time()
         | 
| 316 | 
            +
                        next_obs, next_reward, next_done, info = envs.recv()
         | 
| 317 | 
            +
                        env_recv_time += time.time() - env_recv_time_start
         | 
| 318 | 
            +
                        global_step += len(next_done) * len_actor_device_ids * args.world_size
         | 
| 319 | 
            +
                        env_id = info["env_id"]
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                        inference_time_start = time.time()
         | 
| 322 | 
            +
                        next_obs, action, logits, key = get_action(params, next_obs, key, envs.single_action_space.n)
         | 
| 323 | 
            +
                        inference_time += time.time() - inference_time_start
         | 
| 324 | 
            +
             | 
| 325 | 
            +
                        env_send_time_start = time.time()
         | 
| 326 | 
            +
                        envs.send(np.array(action), env_id)
         | 
| 327 | 
            +
                        env_send_time += time.time() - env_send_time_start
         | 
| 328 | 
            +
                        storage_time_start = time.time()
         | 
| 329 | 
            +
                        obs.append(next_obs)
         | 
| 330 | 
            +
                        dones.append(next_done)
         | 
| 331 | 
            +
                        actions.append(action)
         | 
| 332 | 
            +
                        logitss.append(logits)
         | 
| 333 | 
            +
                        env_ids.append(env_id)
         | 
| 334 | 
            +
                        rewards.append(next_reward)
         | 
| 335 | 
            +
                        firststeps.append(info["elapsed_step"] == 0)
         | 
| 336 | 
            +
             | 
| 337 | 
            +
                        # info["TimeLimit.truncated"] has a bug https://github.com/sail-sg/envpool/issues/239
         | 
| 338 | 
            +
                        # so we use our own truncated flag
         | 
| 339 | 
            +
                        truncated = info["elapsed_step"] >= envs.spec.config.max_episode_steps
         | 
| 340 | 
            +
                        truncations.append(truncated)
         | 
| 341 | 
            +
                        terminations.append(info["terminated"])
         | 
| 342 | 
            +
                        episode_returns[env_id] += info["reward"]
         | 
| 343 | 
            +
                        returned_episode_returns[env_id] = np.where(
         | 
| 344 | 
            +
                            info["terminated"] + truncated, episode_returns[env_id], returned_episode_returns[env_id]
         | 
| 345 | 
            +
                        )
         | 
| 346 | 
            +
                        episode_returns[env_id] *= (1 - info["terminated"]) * (1 - truncated)
         | 
| 347 | 
            +
                        episode_lengths[env_id] += 1
         | 
| 348 | 
            +
                        returned_episode_lengths[env_id] = np.where(
         | 
| 349 | 
            +
                            info["terminated"] + truncated, episode_lengths[env_id], returned_episode_lengths[env_id]
         | 
| 350 | 
            +
                        )
         | 
| 351 | 
            +
                        episode_lengths[env_id] *= (1 - info["terminated"]) * (1 - truncated)
         | 
| 352 | 
            +
                        storage_time += time.time() - storage_time_start
         | 
| 353 | 
            +
                    if args.profile:
         | 
| 354 | 
            +
                        action.block_until_ready()
         | 
| 355 | 
            +
                    rollout_time.append(time.time() - rollout_time_start)
         | 
| 356 | 
            +
                    writer.add_scalar("stats/rollout_time", np.mean(rollout_time), global_step)
         | 
| 357 | 
            +
             | 
| 358 | 
            +
                    avg_episodic_return = np.mean(returned_episode_returns)
         | 
| 359 | 
            +
                    writer.add_scalar("charts/avg_episodic_return", avg_episodic_return, global_step)
         | 
| 360 | 
            +
                    writer.add_scalar("charts/avg_episodic_length", np.mean(returned_episode_lengths), global_step)
         | 
| 361 | 
            +
                    print(f"global_step={global_step}, avg_episodic_return={avg_episodic_return}")
         | 
| 362 | 
            +
                    print("SPS:", int(global_step / (time.time() - start_time)))
         | 
| 363 | 
            +
                    writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
         | 
| 364 | 
            +
             | 
| 365 | 
            +
                    writer.add_scalar("stats/truncations", np.sum(truncations), global_step)
         | 
| 366 | 
            +
                    writer.add_scalar("stats/terminations", np.sum(terminations), global_step)
         | 
| 367 | 
            +
                    writer.add_scalar("stats/env_recv_time", env_recv_time, global_step)
         | 
| 368 | 
            +
                    writer.add_scalar("stats/inference_time", inference_time, global_step)
         | 
| 369 | 
            +
                    writer.add_scalar("stats/storage_time", storage_time, global_step)
         | 
| 370 | 
            +
                    writer.add_scalar("stats/env_send_time", env_send_time, global_step)
         | 
| 371 | 
            +
                    # `make_bulk_array` is actually important. It accumulates the data from the lists
         | 
| 372 | 
            +
                    # into single bulk arrays, which later makes transferring the data to the learner's
         | 
| 373 | 
            +
                    # device slightly faster. See https://wandb.ai/costa-huang/cleanRL/reports/data-transfer-optimization--VmlldzozNjU5MTg1
         | 
| 374 | 
            +
                    c_obs, c_actions, c_logitss = obs, actions, logitss
         | 
| 375 | 
            +
                    if args.learner_device_ids[0] != args.actor_device_ids[0]:
         | 
| 376 | 
            +
                        c_obs, c_actions, c_logitss = make_bulk_array(
         | 
| 377 | 
            +
                            obs,
         | 
| 378 | 
            +
                            actions,
         | 
| 379 | 
            +
                            logitss,
         | 
| 380 | 
            +
                        )
         | 
| 381 | 
            +
             | 
| 382 | 
            +
                    payload = (
         | 
| 383 | 
            +
                        global_step,
         | 
| 384 | 
            +
                        actor_policy_version,
         | 
| 385 | 
            +
                        update,
         | 
| 386 | 
            +
                        c_obs,
         | 
| 387 | 
            +
                        c_actions,
         | 
| 388 | 
            +
                        c_logitss,
         | 
| 389 | 
            +
                        firststeps,
         | 
| 390 | 
            +
                        dones,
         | 
| 391 | 
            +
                        env_ids,
         | 
| 392 | 
            +
                        rewards,
         | 
| 393 | 
            +
                        np.mean(params_queue_get_time),
         | 
| 394 | 
            +
                    )
         | 
| 395 | 
            +
                    if update == 1 or not args.test_actor_learner_throughput:
         | 
| 396 | 
            +
                        rollout_queue_put_time_start = time.time()
         | 
| 397 | 
            +
                        rollout_queue.put(payload)
         | 
| 398 | 
            +
                        rollout_queue_put_time.append(time.time() - rollout_queue_put_time_start)
         | 
| 399 | 
            +
                        writer.add_scalar("stats/rollout_queue_put_time", np.mean(rollout_queue_put_time), global_step)
         | 
| 400 | 
            +
             | 
| 401 | 
            +
                    writer.add_scalar(
         | 
| 402 | 
            +
                        "charts/SPS_update",
         | 
| 403 | 
            +
                        int(
         | 
| 404 | 
            +
                            args.local_num_envs
         | 
| 405 | 
            +
                            * args.num_steps
         | 
| 406 | 
            +
                            * len_actor_device_ids
         | 
| 407 | 
            +
                            * args.world_size
         | 
| 408 | 
            +
                            / (time.time() - update_time_start)
         | 
| 409 | 
            +
                        ),
         | 
| 410 | 
            +
                        global_step,
         | 
| 411 | 
            +
                    )
         | 
| 412 | 
            +
             | 
| 413 | 
            +
                    obs = obs[-args.async_update :]
         | 
| 414 | 
            +
                    dones = dones[-args.async_update :]
         | 
| 415 | 
            +
                    actions = actions[-args.async_update :]
         | 
| 416 | 
            +
                    logitss = logitss[-args.async_update :]
         | 
| 417 | 
            +
                    env_ids = env_ids[-args.async_update :]
         | 
| 418 | 
            +
                    rewards = rewards[-args.async_update :]
         | 
| 419 | 
            +
                    truncations = truncations[-args.async_update :]
         | 
| 420 | 
            +
                    terminations = terminations[-args.async_update :]
         | 
| 421 | 
            +
                    firststeps = firststeps[-args.async_update :]
         | 
| 422 | 
            +
             | 
| 423 | 
            +
             | 
| 424 | 
            +
            @partial(jax.jit, static_argnums=(2))
         | 
| 425 | 
            +
            def get_action_and_value2(
         | 
| 426 | 
            +
                params: flax.core.FrozenDict,
         | 
| 427 | 
            +
                x: np.ndarray,
         | 
| 428 | 
            +
                action_dim: int,
         | 
| 429 | 
            +
            ):
         | 
| 430 | 
            +
                hidden = Network().apply(params.network_params, x)
         | 
| 431 | 
            +
                raw_logits = Actor(action_dim).apply(params.actor_params, hidden)
         | 
| 432 | 
            +
                value = Critic().apply(params.critic_params, hidden).squeeze()
         | 
| 433 | 
            +
                return raw_logits, value
         | 
| 434 | 
            +
             | 
| 435 | 
            +
             | 
| 436 | 
            +
            def policy_gradient_loss(logits, *args):
         | 
| 437 | 
            +
                """rlax.policy_gradient_loss, but with sum(loss) and [T, B, ...] inputs."""
         | 
| 438 | 
            +
                mean_per_batch = jax.vmap(rlax.policy_gradient_loss, in_axes=1)(logits, *args)
         | 
| 439 | 
            +
                total_loss_per_batch = mean_per_batch * logits.shape[0]
         | 
| 440 | 
            +
                return jnp.sum(total_loss_per_batch)
         | 
| 441 | 
            +
             | 
| 442 | 
            +
             | 
| 443 | 
            +
            def entropy_loss_fn(logits, *args):
         | 
| 444 | 
            +
                """rlax.entropy_loss, but with sum(loss) and [T, B, ...] inputs."""
         | 
| 445 | 
            +
                mean_per_batch = jax.vmap(rlax.entropy_loss, in_axes=1)(logits, *args)
         | 
| 446 | 
            +
                total_loss_per_batch = mean_per_batch * logits.shape[0]
         | 
| 447 | 
            +
                return jnp.sum(total_loss_per_batch)
         | 
| 448 | 
            +
             | 
| 449 | 
            +
             | 
| 450 | 
            +
            def impala_loss(params, x, a, logitss, rewards, dones, firststeps, action_dim):
         | 
| 451 | 
            +
                discounts = (1.0 - dones) * args.gamma
         | 
| 452 | 
            +
                mask = 1.0 - firststeps
         | 
| 453 | 
            +
                policy_logits, newvalue = jax.vmap(get_action_and_value2, in_axes=(None, 0, None))(params, x, action_dim)
         | 
| 454 | 
            +
             | 
| 455 | 
            +
                v_t = newvalue[1:]
         | 
| 456 | 
            +
                # Remove bootstrap timestep from non-timesteps.
         | 
| 457 | 
            +
                v_tm1 = newvalue[:-1]
         | 
| 458 | 
            +
                policy_logits = policy_logits[:-1]
         | 
| 459 | 
            +
                logitss = logitss[:-1]
         | 
| 460 | 
            +
                a = a[:-1]
         | 
| 461 | 
            +
                mask = mask[:-1]
         | 
| 462 | 
            +
                rewards = rewards[:-1]
         | 
| 463 | 
            +
                discounts = discounts[:-1]
         | 
| 464 | 
            +
             | 
| 465 | 
            +
                rhos = rlax.categorical_importance_sampling_ratios(policy_logits, logitss, a)
         | 
| 466 | 
            +
                vtrace_td_error_and_advantage = jax.vmap(rlax.vtrace_td_error_and_advantage, in_axes=1, out_axes=1)
         | 
| 467 | 
            +
             | 
| 468 | 
            +
                vtrace_returns = vtrace_td_error_and_advantage(v_tm1, v_t, rewards, discounts, rhos)
         | 
| 469 | 
            +
                pg_advs = vtrace_returns.pg_advantage
         | 
| 470 | 
            +
                pg_loss = policy_gradient_loss(policy_logits, a, pg_advs, mask)
         | 
| 471 | 
            +
             | 
| 472 | 
            +
                baseline_loss = 0.5 * jnp.sum(jnp.square(vtrace_returns.errors) * mask)
         | 
| 473 | 
            +
                ent_loss = entropy_loss_fn(policy_logits, mask)
         | 
| 474 | 
            +
             | 
| 475 | 
            +
                total_loss = pg_loss
         | 
| 476 | 
            +
                total_loss += args.vf_coef * baseline_loss
         | 
| 477 | 
            +
                total_loss += args.ent_coef * ent_loss
         | 
| 478 | 
            +
                return total_loss, (pg_loss, baseline_loss, ent_loss)
         | 
| 479 | 
            +
             | 
| 480 | 
            +
             | 
| 481 | 
            +
            @partial(jax.jit, static_argnames=("action_dim"))
         | 
| 482 | 
            +
            def single_device_update(
         | 
| 483 | 
            +
                agent_state: TrainState,
         | 
| 484 | 
            +
                obs,
         | 
| 485 | 
            +
                actions,
         | 
| 486 | 
            +
                logitss,
         | 
| 487 | 
            +
                rewards,
         | 
| 488 | 
            +
                dones,
         | 
| 489 | 
            +
                firststeps,
         | 
| 490 | 
            +
                action_dim,
         | 
| 491 | 
            +
                key: jax.random.PRNGKey,
         | 
| 492 | 
            +
            ):
         | 
| 493 | 
            +
                impala_loss_grad_fn = jax.value_and_grad(impala_loss, has_aux=True)
         | 
| 494 | 
            +
             | 
| 495 | 
            +
                def update_minibatch(agent_state, minibatch):
         | 
| 496 | 
            +
                    mb_obs, mb_actions, mb_logitss, mb_rewards, mb_dones, mb_firststeps = minibatch
         | 
| 497 | 
            +
                    (loss, (pg_loss, v_loss, entropy_loss)), grads = impala_loss_grad_fn(
         | 
| 498 | 
            +
                        agent_state.params,
         | 
| 499 | 
            +
                        mb_obs,
         | 
| 500 | 
            +
                        mb_actions,
         | 
| 501 | 
            +
                        mb_logitss,
         | 
| 502 | 
            +
                        mb_rewards,
         | 
| 503 | 
            +
                        mb_dones,
         | 
| 504 | 
            +
                        mb_firststeps,
         | 
| 505 | 
            +
                        action_dim,
         | 
| 506 | 
            +
                    )
         | 
| 507 | 
            +
                    grads = jax.lax.pmean(grads, axis_name="local_devices")
         | 
| 508 | 
            +
                    agent_state = agent_state.apply_gradients(grads=grads)
         | 
| 509 | 
            +
                    return agent_state, (loss, pg_loss, v_loss, entropy_loss)
         | 
| 510 | 
            +
             | 
| 511 | 
            +
                agent_state, (loss, pg_loss, v_loss, entropy_loss) = jax.lax.scan(
         | 
| 512 | 
            +
                    update_minibatch,
         | 
| 513 | 
            +
                    agent_state,
         | 
| 514 | 
            +
                    (
         | 
| 515 | 
            +
                        jnp.array(jnp.split(obs, args.num_minibatches, axis=1)),
         | 
| 516 | 
            +
                        jnp.array(jnp.split(actions, args.num_minibatches, axis=1)),
         | 
| 517 | 
            +
                        jnp.array(jnp.split(logitss, args.num_minibatches, axis=1)),
         | 
| 518 | 
            +
                        jnp.array(jnp.split(rewards, args.num_minibatches, axis=1)),
         | 
| 519 | 
            +
                        jnp.array(jnp.split(dones, args.num_minibatches, axis=1)),
         | 
| 520 | 
            +
                        jnp.array(jnp.split(firststeps, args.num_minibatches, axis=1)),
         | 
| 521 | 
            +
                    ),
         | 
| 522 | 
            +
                )
         | 
| 523 | 
            +
                return agent_state, loss, pg_loss, v_loss, entropy_loss, key
         | 
| 524 | 
            +
             | 
| 525 | 
            +
             | 
| 526 | 
            +
            if __name__ == "__main__":
         | 
| 527 | 
            +
                args = parse_args()
         | 
| 528 | 
            +
                if args.distributed:
         | 
| 529 | 
            +
                    jax.distributed.initialize(
         | 
| 530 | 
            +
                        local_device_ids=range(len(args.learner_device_ids) + len(args.actor_device_ids)),
         | 
| 531 | 
            +
                    )
         | 
| 532 | 
            +
                    print(list(range(len(args.learner_device_ids) + len(args.actor_device_ids))))
         | 
| 533 | 
            +
             | 
| 534 | 
            +
                args.world_size = jax.process_count()
         | 
| 535 | 
            +
                args.local_rank = jax.process_index()
         | 
| 536 | 
            +
                args.num_envs = args.local_num_envs * args.world_size
         | 
| 537 | 
            +
                args.batch_size = args.local_batch_size * args.world_size
         | 
| 538 | 
            +
                args.minibatch_size = args.local_minibatch_size * args.world_size
         | 
| 539 | 
            +
                args.num_updates = args.total_timesteps // (args.local_batch_size * args.world_size)
         | 
| 540 | 
            +
                args.async_update = int(args.local_num_envs / args.async_batch_size)
         | 
| 541 | 
            +
                local_devices = jax.local_devices()
         | 
| 542 | 
            +
                global_devices = jax.devices()
         | 
| 543 | 
            +
                learner_devices = [local_devices[d_id] for d_id in args.learner_device_ids]
         | 
| 544 | 
            +
                actor_devices = [local_devices[d_id] for d_id in args.actor_device_ids]
         | 
| 545 | 
            +
                global_learner_decices = [
         | 
| 546 | 
            +
                    global_devices[d_id + process_index * len(local_devices)]
         | 
| 547 | 
            +
                    for process_index in range(args.world_size)
         | 
| 548 | 
            +
                    for d_id in args.learner_device_ids
         | 
| 549 | 
            +
                ]
         | 
| 550 | 
            +
                print("global_learner_decices", global_learner_decices)
         | 
| 551 | 
            +
                args.global_learner_decices = [str(item) for item in global_learner_decices]
         | 
| 552 | 
            +
                args.actor_devices = [str(item) for item in actor_devices]
         | 
| 553 | 
            +
                args.learner_devices = [str(item) for item in learner_devices]
         | 
| 554 | 
            +
             | 
| 555 | 
            +
                run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{uuid.uuid4()}"
         | 
| 556 | 
            +
                if args.track and args.local_rank == 0:
         | 
| 557 | 
            +
                    import wandb
         | 
| 558 | 
            +
             | 
| 559 | 
            +
                    wandb.init(
         | 
| 560 | 
            +
                        project=args.wandb_project_name,
         | 
| 561 | 
            +
                        entity=args.wandb_entity,
         | 
| 562 | 
            +
                        sync_tensorboard=True,
         | 
| 563 | 
            +
                        config=vars(args),
         | 
| 564 | 
            +
                        name=run_name,
         | 
| 565 | 
            +
                        monitor_gym=True,
         | 
| 566 | 
            +
                        save_code=True,
         | 
| 567 | 
            +
                    )
         | 
| 568 | 
            +
                writer = SummaryWriter(f"runs/{run_name}")
         | 
| 569 | 
            +
                writer.add_text(
         | 
| 570 | 
            +
                    "hyperparameters",
         | 
| 571 | 
            +
                    "|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
         | 
| 572 | 
            +
                )
         | 
| 573 | 
            +
             | 
| 574 | 
            +
                # TRY NOT TO MODIFY: seeding
         | 
| 575 | 
            +
                random.seed(args.seed)
         | 
| 576 | 
            +
                np.random.seed(args.seed)
         | 
| 577 | 
            +
                key = jax.random.PRNGKey(args.seed)
         | 
| 578 | 
            +
                key, network_key, actor_key, critic_key = jax.random.split(key, 4)
         | 
| 579 | 
            +
             | 
| 580 | 
            +
                # env setup
         | 
| 581 | 
            +
                envs = make_env(args.env_id, args.seed, args.local_num_envs, args.async_batch_size)()
         | 
| 582 | 
            +
                assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported"
         | 
| 583 | 
            +
             | 
| 584 | 
            +
                def linear_schedule(count):
         | 
| 585 | 
            +
                    # anneal learning rate linearly after one training iteration which contains
         | 
| 586 | 
            +
                    # (args.num_minibatches) gradient updates
         | 
| 587 | 
            +
                    frac = 1.0 - (count // (args.num_minibatches)) / args.num_updates
         | 
| 588 | 
            +
                    return args.learning_rate * frac
         | 
| 589 | 
            +
             | 
| 590 | 
            +
                network = Network()
         | 
| 591 | 
            +
                actor = Actor(action_dim=envs.single_action_space.n)
         | 
| 592 | 
            +
                critic = Critic()
         | 
| 593 | 
            +
                network_params = network.init(network_key, np.array([envs.single_observation_space.sample()]))
         | 
| 594 | 
            +
                agent_state = TrainState.create(
         | 
| 595 | 
            +
                    apply_fn=None,
         | 
| 596 | 
            +
                    params=AgentParams(
         | 
| 597 | 
            +
                        network_params,
         | 
| 598 | 
            +
                        actor.init(actor_key, network.apply(network_params, np.array([envs.single_observation_space.sample()]))),
         | 
| 599 | 
            +
                        critic.init(critic_key, network.apply(network_params, np.array([envs.single_observation_space.sample()]))),
         | 
| 600 | 
            +
                    ),
         | 
| 601 | 
            +
                    tx=optax.chain(
         | 
| 602 | 
            +
                        optax.clip_by_global_norm(args.max_grad_norm),
         | 
| 603 | 
            +
                        optax.inject_hyperparams(optax.adam)(
         | 
| 604 | 
            +
                            learning_rate=linear_schedule if args.anneal_lr else args.learning_rate, eps=1e-5
         | 
| 605 | 
            +
                        ),
         | 
| 606 | 
            +
                    ),
         | 
| 607 | 
            +
                )
         | 
| 608 | 
            +
                agent_state = flax.jax_utils.replicate(agent_state, devices=learner_devices)
         | 
| 609 | 
            +
             | 
| 610 | 
            +
                multi_device_update = jax.pmap(
         | 
| 611 | 
            +
                    single_device_update,
         | 
| 612 | 
            +
                    axis_name="local_devices",
         | 
| 613 | 
            +
                    devices=global_learner_decices,
         | 
| 614 | 
            +
                    in_axes=(0, 0, 0, 0, 0, 0, 0, None, None),
         | 
| 615 | 
            +
                    out_axes=(0, 0, 0, 0, 0, None),
         | 
| 616 | 
            +
                    static_broadcasted_argnums=(7),
         | 
| 617 | 
            +
                )
         | 
| 618 | 
            +
             | 
| 619 | 
            +
                rollout_queue = queue.Queue(maxsize=1)
         | 
| 620 | 
            +
                params_queues = []
         | 
| 621 | 
            +
                for d_idx, d_id in enumerate(args.actor_device_ids):
         | 
| 622 | 
            +
                    params_queue = queue.Queue(maxsize=1)
         | 
| 623 | 
            +
                    params_queue.put(jax.device_put(flax.jax_utils.unreplicate(agent_state.params), local_devices[d_id]))
         | 
| 624 | 
            +
                    threading.Thread(
         | 
| 625 | 
            +
                        target=rollout,
         | 
| 626 | 
            +
                        args=(
         | 
| 627 | 
            +
                            jax.device_put(key, local_devices[d_id]),
         | 
| 628 | 
            +
                            args,
         | 
| 629 | 
            +
                            rollout_queue,
         | 
| 630 | 
            +
                            params_queue,
         | 
| 631 | 
            +
                            writer,
         | 
| 632 | 
            +
                            learner_devices,
         | 
| 633 | 
            +
                        ),
         | 
| 634 | 
            +
                    ).start()
         | 
| 635 | 
            +
                    params_queues.append(params_queue)
         | 
| 636 | 
            +
             | 
| 637 | 
            +
                rollout_queue_get_time = deque(maxlen=10)
         | 
| 638 | 
            +
                data_transfer_time = deque(maxlen=10)
         | 
| 639 | 
            +
                learner_policy_version = 0
         | 
| 640 | 
            +
                prepare_data = jax.jit(prepare_data, device=learner_devices[0])
         | 
| 641 | 
            +
                while True:
         | 
| 642 | 
            +
                    learner_policy_version += 1
         | 
| 643 | 
            +
                    if learner_policy_version == 1 or not args.test_actor_learner_throughput:
         | 
| 644 | 
            +
                        rollout_queue_get_time_start = time.time()
         | 
| 645 | 
            +
                        (
         | 
| 646 | 
            +
                            global_step,
         | 
| 647 | 
            +
                            actor_policy_version,
         | 
| 648 | 
            +
                            update,
         | 
| 649 | 
            +
                            obs,
         | 
| 650 | 
            +
                            actions,
         | 
| 651 | 
            +
                            logitss,
         | 
| 652 | 
            +
                            firststeps,
         | 
| 653 | 
            +
                            dones,
         | 
| 654 | 
            +
                            env_ids,
         | 
| 655 | 
            +
                            rewards,
         | 
| 656 | 
            +
                            avg_params_queue_get_time,
         | 
| 657 | 
            +
                        ) = rollout_queue.get()
         | 
| 658 | 
            +
                        rollout_queue_get_time.append(time.time() - rollout_queue_get_time_start)
         | 
| 659 | 
            +
                        writer.add_scalar("stats/rollout_queue_get_time", np.mean(rollout_queue_get_time), global_step)
         | 
| 660 | 
            +
                        writer.add_scalar(
         | 
| 661 | 
            +
                            "stats/rollout_params_queue_get_time_diff",
         | 
| 662 | 
            +
                            np.mean(rollout_queue_get_time) - avg_params_queue_get_time,
         | 
| 663 | 
            +
                            global_step,
         | 
| 664 | 
            +
                        )
         | 
| 665 | 
            +
             | 
| 666 | 
            +
                    data_transfer_time_start = time.time()
         | 
| 667 | 
            +
                    obs, dones, actions, logitss, firststeps, env_ids, rewards = prepare_data(
         | 
| 668 | 
            +
                        obs,
         | 
| 669 | 
            +
                        dones,
         | 
| 670 | 
            +
                        actions,
         | 
| 671 | 
            +
                        logitss,
         | 
| 672 | 
            +
                        firststeps,
         | 
| 673 | 
            +
                        env_ids,
         | 
| 674 | 
            +
                        rewards,
         | 
| 675 | 
            +
                    )
         | 
| 676 | 
            +
             | 
| 677 | 
            +
                    obs = jnp.array_split(obs, len(learner_devices), axis=1)
         | 
| 678 | 
            +
                    actions = jnp.array_split(actions, len(learner_devices), axis=1)
         | 
| 679 | 
            +
                    logitss = jnp.array_split(logitss, len(learner_devices), axis=1)
         | 
| 680 | 
            +
                    rewards = jnp.array_split(rewards, len(learner_devices), axis=1)
         | 
| 681 | 
            +
                    dones = jnp.array_split(dones, len(learner_devices), axis=1)
         | 
| 682 | 
            +
                    firststeps = jnp.array_split(firststeps, len(learner_devices), axis=1)
         | 
| 683 | 
            +
                    data_transfer_time.append(time.time() - data_transfer_time_start)
         | 
| 684 | 
            +
                    writer.add_scalar("stats/data_transfer_time", np.mean(data_transfer_time), global_step)
         | 
| 685 | 
            +
             | 
| 686 | 
            +
                    training_time_start = time.time()
         | 
| 687 | 
            +
                    (agent_state, loss, pg_loss, v_loss, entropy_loss, key) = multi_device_update(
         | 
| 688 | 
            +
                        agent_state,
         | 
| 689 | 
            +
                        jax.device_put_sharded(obs, learner_devices),
         | 
| 690 | 
            +
                        jax.device_put_sharded(actions, learner_devices),
         | 
| 691 | 
            +
                        jax.device_put_sharded(logitss, learner_devices),
         | 
| 692 | 
            +
                        jax.device_put_sharded(rewards, learner_devices),
         | 
| 693 | 
            +
                        jax.device_put_sharded(dones, learner_devices),
         | 
| 694 | 
            +
                        jax.device_put_sharded(firststeps, learner_devices),
         | 
| 695 | 
            +
                        envs.single_action_space.n,
         | 
| 696 | 
            +
                        key,
         | 
| 697 | 
            +
                    )
         | 
| 698 | 
            +
                    if learner_policy_version == 1 or not args.test_actor_learner_throughput:
         | 
| 699 | 
            +
                        for d_idx, d_id in enumerate(args.actor_device_ids):
         | 
| 700 | 
            +
                            params_queues[d_idx].put(jax.device_put(flax.jax_utils.unreplicate(agent_state.params), local_devices[d_id]))
         | 
| 701 | 
            +
                    if args.profile:
         | 
| 702 | 
            +
                        v_loss[-1, -1, -1].block_until_ready()
         | 
| 703 | 
            +
                    writer.add_scalar("stats/training_time", time.time() - training_time_start, global_step)
         | 
| 704 | 
            +
                    writer.add_scalar("stats/rollout_queue_size", rollout_queue.qsize(), global_step)
         | 
| 705 | 
            +
                    writer.add_scalar("stats/params_queue_size", params_queue.qsize(), global_step)
         | 
| 706 | 
            +
                    print(
         | 
| 707 | 
            +
                        global_step,
         | 
| 708 | 
            +
                        f"actor_policy_version={actor_policy_version}, actor_update={update}, learner_policy_version={learner_policy_version}, training time: {time.time() - training_time_start}s",
         | 
| 709 | 
            +
                    )
         | 
| 710 | 
            +
             | 
| 711 | 
            +
                    # TRY NOT TO MODIFY: record rewards for plotting purposes
         | 
| 712 | 
            +
                    writer.add_scalar("charts/learning_rate", agent_state.opt_state[1].hyperparams["learning_rate"][0].item(), global_step)
         | 
| 713 | 
            +
                    writer.add_scalar("losses/value_loss", v_loss[-1, -1].item(), global_step)
         | 
| 714 | 
            +
                    writer.add_scalar("losses/policy_loss", pg_loss[-1, -1].item(), global_step)
         | 
| 715 | 
            +
                    writer.add_scalar("losses/entropy", entropy_loss[-1, -1].item(), global_step)
         | 
| 716 | 
            +
                    writer.add_scalar("losses/loss", loss[-1, -1].item(), global_step)
         | 
| 717 | 
            +
                    if update >= args.num_updates:
         | 
| 718 | 
            +
                        break
         | 
| 719 | 
            +
             | 
| 720 | 
            +
                    # print weights
         | 
| 721 | 
            +
                    # sum_params(agent_state.params)
         | 
| 722 | 
            +
                    # print("network_params", agent_state.params.network_params['params']["Dense_0"]["kernel"])
         | 
| 723 | 
            +
                    # print("actor_params", agent_state.params.actor_params['params']["Dense_0"]["kernel"])
         | 
| 724 | 
            +
                    # print("critic_params", agent_state.params.critic_params['params']["Dense_0"]["kernel"])
         | 
| 725 | 
            +
             | 
| 726 | 
            +
                if args.save_model and args.local_rank == 0:
         | 
| 727 | 
            +
                    if args.distributed:
         | 
| 728 | 
            +
                        jax.distributed.shutdown()
         | 
| 729 | 
            +
                    agent_state = flax.jax_utils.unreplicate(agent_state)
         | 
| 730 | 
            +
                    model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
         | 
| 731 | 
            +
                    with open(model_path, "wb") as f:
         | 
| 732 | 
            +
                        f.write(
         | 
| 733 | 
            +
                            flax.serialization.to_bytes(
         | 
| 734 | 
            +
                                [
         | 
| 735 | 
            +
                                    vars(args),
         | 
| 736 | 
            +
                                    [
         | 
| 737 | 
            +
                                        agent_state.params.network_params,
         | 
| 738 | 
            +
                                        agent_state.params.actor_params,
         | 
| 739 | 
            +
                                        agent_state.params.critic_params,
         | 
| 740 | 
            +
                                    ],
         | 
| 741 | 
            +
                                ]
         | 
| 742 | 
            +
                            )
         | 
| 743 | 
            +
                        )
         | 
| 744 | 
            +
                    print(f"model saved to {model_path}")
         | 
| 745 | 
            +
                    from cleanrl_utils.evals.ppo_envpool_jax_eval import evaluate
         | 
| 746 | 
            +
             | 
| 747 | 
            +
                    episodic_returns = evaluate(
         | 
| 748 | 
            +
                        model_path,
         | 
| 749 | 
            +
                        make_env,
         | 
| 750 | 
            +
                        args.env_id,
         | 
| 751 | 
            +
                        eval_episodes=10,
         | 
| 752 | 
            +
                        run_name=f"{run_name}-eval",
         | 
| 753 | 
            +
                        Model=(Network, Actor, Critic),
         | 
| 754 | 
            +
                    )
         | 
| 755 | 
            +
                    for idx, episodic_return in enumerate(episodic_returns):
         | 
| 756 | 
            +
                        writer.add_scalar("eval/episodic_return", episodic_return, idx)
         | 
| 757 | 
            +
             | 
| 758 | 
            +
                    if args.upload_model:
         | 
| 759 | 
            +
                        from cleanrl_utils.huggingface import push_to_hub
         | 
| 760 | 
            +
             | 
| 761 | 
            +
                        repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
         | 
| 762 | 
            +
                        repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
         | 
| 763 | 
            +
                        push_to_hub(
         | 
| 764 | 
            +
                            args,
         | 
| 765 | 
            +
                            episodic_returns,
         | 
| 766 | 
            +
                            repo_id,
         | 
| 767 | 
            +
                            "PPO",
         | 
| 768 | 
            +
                            f"runs/{run_name}",
         | 
| 769 | 
            +
                            f"videos/{run_name}-eval",
         | 
| 770 | 
            +
                            extra_dependencies=["jax", "envpool", "atari"],
         | 
| 771 | 
            +
                        )
         | 
| 772 | 
            +
             | 
| 773 | 
            +
                envs.close()
         | 
| 774 | 
            +
                writer.close()
         | 
    	
        cleanba_impala_envpool_machado_atari_wrapper_a0_l1_d4.cleanrl_model
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:1059be8b3aa4fee0b28b24a386344b4380e22549368cca7a2f0188acdb0bfc2b
         | 
| 3 | 
            +
            size 4378458
         | 
    	
        events.out.tfevents.1679759582.ip-26-0-137-115
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:c1a3d481115a0380b975dec6c0e93226aed42b1f352be1399dc3919bc081dcdf
         | 
| 3 | 
            +
            size 30917757
         | 
    	
        poetry.lock
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        pyproject.toml
    ADDED
    
    | @@ -0,0 +1,34 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            [tool.poetry]
         | 
| 2 | 
            +
            name = "cleanba"
         | 
| 3 | 
            +
            version = "0.1.0"
         | 
| 4 | 
            +
            description = ""
         | 
| 5 | 
            +
            authors = ["Costa Huang <[email protected]>"]
         | 
| 6 | 
            +
            readme = "README.md"
         | 
| 7 | 
            +
            packages = [
         | 
| 8 | 
            +
                { include = "cleanba" },
         | 
| 9 | 
            +
                { include = "cleanrl_utils" },
         | 
| 10 | 
            +
            ]
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            [tool.poetry.dependencies]
         | 
| 13 | 
            +
            python = "^3.8"
         | 
| 14 | 
            +
            tensorboard = "^2.12.0"
         | 
| 15 | 
            +
            envpool = "^0.8.1"
         | 
| 16 | 
            +
            jax = "0.3.25"
         | 
| 17 | 
            +
            flax = "0.6.0"
         | 
| 18 | 
            +
            optax = "0.1.3"
         | 
| 19 | 
            +
            huggingface-hub = "^0.12.0"
         | 
| 20 | 
            +
            jaxlib = "0.3.25"
         | 
| 21 | 
            +
            wandb = "^0.13.10"
         | 
| 22 | 
            +
            tensorboardx = "^2.5.1"
         | 
| 23 | 
            +
            chex = "0.1.5"
         | 
| 24 | 
            +
            gym = "0.23.1"
         | 
| 25 | 
            +
            opencv-python = "^4.7.0.68"
         | 
| 26 | 
            +
            moviepy = "^1.0.3"
         | 
| 27 | 
            +
             | 
| 28 | 
            +
             | 
| 29 | 
            +
            [tool.poetry.group.dev.dependencies]
         | 
| 30 | 
            +
            pre-commit = "^3.0.4"
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            [build-system]
         | 
| 33 | 
            +
            requires = ["poetry-core"]
         | 
| 34 | 
            +
            build-backend = "poetry.core.masonry.api"
         | 
    	
        replay.mp4
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:5db5b10a31c33532b0d751b497a8fd2393dc2156a157ddb3eb8cd0114cb1731e
         | 
| 3 | 
            +
            size 3023273
         | 
    	
        videos/DemonAttack-v5__cleanba_impala_envpool_machado_atari_wrapper_a0_l1_d4__2__5860dc6b-e85d-41d6-8d89-03026ebdb650-eval/0.mp4
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:5db5b10a31c33532b0d751b497a8fd2393dc2156a157ddb3eb8cd0114cb1731e
         | 
| 3 | 
            +
            size 3023273
         | 
