pushing model
Browse files- .gitattributes +1 -0
- README.md +105 -0
- cleanba_ppo_envpool_impala_atari_wrapper.cleanrl_model +3 -0
- cleanba_ppo_envpool_impala_atari_wrapper.py +819 -0
- events.out.tfevents.1676646224.ip-26-0-139-51.3674704.0 +3 -0
- poetry.lock +0 -0
- pyproject.toml +178 -0
- replay.mp4 +0 -0
- videos/Jamesbond-v5__cleanba_ppo_envpool_impala_atari_wrapper__2__247bfa8d-1065-4058-9c9d-43d430e56f04-eval/0.mp4 +0 -0
    	
        .gitattributes
    CHANGED
    
    | @@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text | |
| 32 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 33 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
|  | 
|  | |
| 32 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 33 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
            +
            cleanba_ppo_envpool_impala_atari_wrapper.cleanrl_model filter=lfs diff=lfs merge=lfs -text
         | 
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,105 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            tags:
         | 
| 3 | 
            +
            - Jamesbond-v5
         | 
| 4 | 
            +
            - deep-reinforcement-learning
         | 
| 5 | 
            +
            - reinforcement-learning
         | 
| 6 | 
            +
            - custom-implementation
         | 
| 7 | 
            +
            library_name: cleanrl
         | 
| 8 | 
            +
            model-index:
         | 
| 9 | 
            +
            - name: PPO
         | 
| 10 | 
            +
              results:
         | 
| 11 | 
            +
              - task:
         | 
| 12 | 
            +
                  type: reinforcement-learning
         | 
| 13 | 
            +
                  name: reinforcement-learning
         | 
| 14 | 
            +
                dataset:
         | 
| 15 | 
            +
                  name: Jamesbond-v5
         | 
| 16 | 
            +
                  type: Jamesbond-v5
         | 
| 17 | 
            +
                metrics:
         | 
| 18 | 
            +
                - type: mean_reward
         | 
| 19 | 
            +
                  value: 21765.00 +/- 5059.70
         | 
| 20 | 
            +
                  name: mean_reward
         | 
| 21 | 
            +
                  verified: false
         | 
| 22 | 
            +
            ---
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            # (CleanRL) **PPO** Agent Playing **Jamesbond-v5**
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            This is a trained model of a PPO agent playing Jamesbond-v5.
         | 
| 27 | 
            +
            The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
         | 
| 28 | 
            +
            found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper.py).
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            ## Get Started
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            To use this model, please install the `cleanrl` package with the following command:
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            ```
         | 
| 35 | 
            +
            pip install "cleanrl[jax,envpool,atari]"
         | 
| 36 | 
            +
            python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper --env-id Jamesbond-v5
         | 
| 37 | 
            +
            ```
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
         | 
| 40 | 
            +
             | 
| 41 | 
            +
             | 
| 42 | 
            +
            ## Command to reproduce the training
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            ```bash
         | 
| 45 | 
            +
            curl -OL https://huggingface.co/cleanrl/Jamesbond-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper.py
         | 
| 46 | 
            +
            curl -OL https://huggingface.co/cleanrl/Jamesbond-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml
         | 
| 47 | 
            +
            curl -OL https://huggingface.co/cleanrl/Jamesbond-v5-cleanba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock
         | 
| 48 | 
            +
            poetry install --all-extras
         | 
| 49 | 
            +
            python cleanba_ppo_envpool_impala_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --save-model --upload-model --hf-entity cleanrl --env-id Jamesbond-v5 --seed 2
         | 
| 50 | 
            +
            ```
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            # Hyperparameters
         | 
| 53 | 
            +
            ```python
         | 
| 54 | 
            +
            {'actor_device_ids': [0],
         | 
| 55 | 
            +
             'actor_devices': ['gpu:0'],
         | 
| 56 | 
            +
             'anneal_lr': True,
         | 
| 57 | 
            +
             'async_batch_size': 20,
         | 
| 58 | 
            +
             'async_update': 3,
         | 
| 59 | 
            +
             'batch_size': 15360,
         | 
| 60 | 
            +
             'capture_video': False,
         | 
| 61 | 
            +
             'clip_coef': 0.1,
         | 
| 62 | 
            +
             'cuda': True,
         | 
| 63 | 
            +
             'distributed': True,
         | 
| 64 | 
            +
             'ent_coef': 0.01,
         | 
| 65 | 
            +
             'env_id': 'Jamesbond-v5',
         | 
| 66 | 
            +
             'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper',
         | 
| 67 | 
            +
             'gae_lambda': 0.95,
         | 
| 68 | 
            +
             'gamma': 0.99,
         | 
| 69 | 
            +
             'global_learner_decices': ['gpu:1',
         | 
| 70 | 
            +
                                        'gpu:2',
         | 
| 71 | 
            +
                                        'gpu:3',
         | 
| 72 | 
            +
                                        'gpu:5',
         | 
| 73 | 
            +
                                        'gpu:6',
         | 
| 74 | 
            +
                                        'gpu:7'],
         | 
| 75 | 
            +
             'hf_entity': 'cleanrl',
         | 
| 76 | 
            +
             'learner_device_ids': [1, 2, 3],
         | 
| 77 | 
            +
             'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'],
         | 
| 78 | 
            +
             'learning_rate': 0.00025,
         | 
| 79 | 
            +
             'local_batch_size': 7680,
         | 
| 80 | 
            +
             'local_minibatch_size': 1920,
         | 
| 81 | 
            +
             'local_num_envs': 60,
         | 
| 82 | 
            +
             'local_rank': 0,
         | 
| 83 | 
            +
             'max_grad_norm': 0.5,
         | 
| 84 | 
            +
             'minibatch_size': 3840,
         | 
| 85 | 
            +
             'norm_adv': True,
         | 
| 86 | 
            +
             'num_envs': 120,
         | 
| 87 | 
            +
             'num_minibatches': 4,
         | 
| 88 | 
            +
             'num_steps': 128,
         | 
| 89 | 
            +
             'num_updates': 3255,
         | 
| 90 | 
            +
             'profile': False,
         | 
| 91 | 
            +
             'save_model': True,
         | 
| 92 | 
            +
             'seed': 2,
         | 
| 93 | 
            +
             'target_kl': None,
         | 
| 94 | 
            +
             'test_actor_learner_throughput': False,
         | 
| 95 | 
            +
             'torch_deterministic': True,
         | 
| 96 | 
            +
             'total_timesteps': 50000000,
         | 
| 97 | 
            +
             'track': True,
         | 
| 98 | 
            +
             'update_epochs': 4,
         | 
| 99 | 
            +
             'upload_model': True,
         | 
| 100 | 
            +
             'vf_coef': 0.5,
         | 
| 101 | 
            +
             'wandb_entity': None,
         | 
| 102 | 
            +
             'wandb_project_name': 'cleanRL',
         | 
| 103 | 
            +
             'world_size': 2}
         | 
| 104 | 
            +
            ```
         | 
| 105 | 
            +
                
         | 
    	
        cleanba_ppo_envpool_impala_atari_wrapper.cleanrl_model
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:61791a81162685a35cb08ef6f067b5998144a1a684762dde8cdd6944e5eade55
         | 
| 3 | 
            +
            size 4378546
         | 
    	
        cleanba_ppo_envpool_impala_atari_wrapper.py
    ADDED
    
    | @@ -0,0 +1,819 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_atari_envpool_async_jax_scan_impalanet_machadopy
         | 
| 2 | 
            +
            import argparse
         | 
| 3 | 
            +
            import os
         | 
| 4 | 
            +
            import random
         | 
| 5 | 
            +
            import time
         | 
| 6 | 
            +
            import uuid
         | 
| 7 | 
            +
            from collections import deque
         | 
| 8 | 
            +
            from distutils.util import strtobool
         | 
| 9 | 
            +
            from functools import partial
         | 
| 10 | 
            +
            from typing import Sequence
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            os.environ[
         | 
| 13 | 
            +
                "XLA_PYTHON_CLIENT_MEM_FRACTION"
         | 
| 14 | 
            +
            ] = "0.6"  # see https://github.com/google/jax/discussions/6332#discussioncomment-1279991
         | 
| 15 | 
            +
            os.environ["XLA_FLAGS"] = "--xla_cpu_multi_thread_eigen=false " "intra_op_parallelism_threads=1"
         | 
| 16 | 
            +
            import queue
         | 
| 17 | 
            +
            import threading
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            import envpool
         | 
| 20 | 
            +
            import flax
         | 
| 21 | 
            +
            import flax.linen as nn
         | 
| 22 | 
            +
            import gym
         | 
| 23 | 
            +
            import jax
         | 
| 24 | 
            +
            import jax.numpy as jnp
         | 
| 25 | 
            +
            import numpy as np
         | 
| 26 | 
            +
            import optax
         | 
| 27 | 
            +
            from flax.linen.initializers import constant, orthogonal
         | 
| 28 | 
            +
            from flax.training.train_state import TrainState
         | 
| 29 | 
            +
            from torch.utils.tensorboard import SummaryWriter
         | 
| 30 | 
            +
             | 
| 31 | 
            +
             | 
| 32 | 
            +
            def parse_args():
         | 
| 33 | 
            +
                # fmt: off
         | 
| 34 | 
            +
                parser = argparse.ArgumentParser()
         | 
| 35 | 
            +
                parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
         | 
| 36 | 
            +
                    help="the name of this experiment")
         | 
| 37 | 
            +
                parser.add_argument("--seed", type=int, default=1,
         | 
| 38 | 
            +
                    help="seed of the experiment")
         | 
| 39 | 
            +
                parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
         | 
| 40 | 
            +
                    help="if toggled, `torch.backends.cudnn.deterministic=False`")
         | 
| 41 | 
            +
                parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
         | 
| 42 | 
            +
                    help="if toggled, cuda will be enabled by default")
         | 
| 43 | 
            +
                parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
         | 
| 44 | 
            +
                    help="if toggled, this experiment will be tracked with Weights and Biases")
         | 
| 45 | 
            +
                parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
         | 
| 46 | 
            +
                    help="the wandb's project name")
         | 
| 47 | 
            +
                parser.add_argument("--wandb-entity", type=str, default=None,
         | 
| 48 | 
            +
                    help="the entity (team) of wandb's project")
         | 
| 49 | 
            +
                parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
         | 
| 50 | 
            +
                    help="weather to capture videos of the agent performances (check out `videos` folder)")
         | 
| 51 | 
            +
                parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
         | 
| 52 | 
            +
                    help="whether to save model into the `runs/{run_name}` folder")
         | 
| 53 | 
            +
                parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
         | 
| 54 | 
            +
                    help="whether to upload the saved model to huggingface")
         | 
| 55 | 
            +
                parser.add_argument("--hf-entity", type=str, default="",
         | 
| 56 | 
            +
                    help="the user or org name of the model repository from the Hugging Face Hub")
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                # Algorithm specific arguments
         | 
| 59 | 
            +
                parser.add_argument("--env-id", type=str, default="Breakout-v5",
         | 
| 60 | 
            +
                    help="the id of the environment")
         | 
| 61 | 
            +
                parser.add_argument("--total-timesteps", type=int, default=50000000,
         | 
| 62 | 
            +
                    help="total timesteps of the experiments")
         | 
| 63 | 
            +
                parser.add_argument("--learning-rate", type=float, default=2.5e-4,
         | 
| 64 | 
            +
                    help="the learning rate of the optimizer")
         | 
| 65 | 
            +
                parser.add_argument("--local-num-envs", type=int, default=60,
         | 
| 66 | 
            +
                    help="the number of parallel game environments")
         | 
| 67 | 
            +
                parser.add_argument("--async-batch-size", type=int, default=20,
         | 
| 68 | 
            +
                    help="the envpool's batch size in the async mode")
         | 
| 69 | 
            +
                parser.add_argument("--num-steps", type=int, default=128,
         | 
| 70 | 
            +
                    help="the number of steps to run in each environment per policy rollout")
         | 
| 71 | 
            +
                parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
         | 
| 72 | 
            +
                    help="Toggle learning rate annealing for policy and value networks")
         | 
| 73 | 
            +
                parser.add_argument("--gamma", type=float, default=0.99,
         | 
| 74 | 
            +
                    help="the discount factor gamma")
         | 
| 75 | 
            +
                parser.add_argument("--gae-lambda", type=float, default=0.95,
         | 
| 76 | 
            +
                    help="the lambda for the general advantage estimation")
         | 
| 77 | 
            +
                parser.add_argument("--num-minibatches", type=int, default=4,
         | 
| 78 | 
            +
                    help="the number of mini-batches")
         | 
| 79 | 
            +
                parser.add_argument("--update-epochs", type=int, default=4,
         | 
| 80 | 
            +
                    help="the K epochs to update the policy")
         | 
| 81 | 
            +
                parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
         | 
| 82 | 
            +
                    help="Toggles advantages normalization")
         | 
| 83 | 
            +
                parser.add_argument("--clip-coef", type=float, default=0.1,
         | 
| 84 | 
            +
                    help="the surrogate clipping coefficient")
         | 
| 85 | 
            +
                parser.add_argument("--ent-coef", type=float, default=0.01,
         | 
| 86 | 
            +
                    help="coefficient of the entropy")
         | 
| 87 | 
            +
                parser.add_argument("--vf-coef", type=float, default=0.5,
         | 
| 88 | 
            +
                    help="coefficient of the value function")
         | 
| 89 | 
            +
                parser.add_argument("--max-grad-norm", type=float, default=0.5,
         | 
| 90 | 
            +
                    help="the maximum norm for the gradient clipping")
         | 
| 91 | 
            +
                parser.add_argument("--target-kl", type=float, default=None,
         | 
| 92 | 
            +
                    help="the target KL divergence threshold")
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                parser.add_argument("--actor-device-ids", type=int, nargs="+", default=[0], # type is actually List[int]
         | 
| 95 | 
            +
                    help="the device ids that actor workers will use (currently only support 1 device)")
         | 
| 96 | 
            +
                parser.add_argument("--learner-device-ids", type=int, nargs="+", default=[0], # type is actually List[int]
         | 
| 97 | 
            +
                    help="the device ids that learner workers will use")
         | 
| 98 | 
            +
                parser.add_argument("--distributed", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
         | 
| 99 | 
            +
                    help="whether to use `jax.distirbuted`")
         | 
| 100 | 
            +
                parser.add_argument("--profile", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
         | 
| 101 | 
            +
                    help="whether to call block_until_ready() for profiling")
         | 
| 102 | 
            +
                parser.add_argument("--test-actor-learner-throughput", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
         | 
| 103 | 
            +
                    help="whether to test actor-learner throughput by removing the actor-learner communication")
         | 
| 104 | 
            +
                args = parser.parse_args()
         | 
| 105 | 
            +
                args.local_batch_size = int(args.local_num_envs * args.num_steps)
         | 
| 106 | 
            +
                args.local_minibatch_size = int(args.local_batch_size // args.num_minibatches)
         | 
| 107 | 
            +
                args.num_updates = args.total_timesteps // args.local_batch_size
         | 
| 108 | 
            +
                args.async_update = int(args.local_num_envs / args.async_batch_size)
         | 
| 109 | 
            +
                assert len(args.actor_device_ids) == 1, "only 1 actor_device_ids is supported now"
         | 
| 110 | 
            +
                # fmt: on
         | 
| 111 | 
            +
                return args
         | 
| 112 | 
            +
             | 
| 113 | 
            +
             | 
| 114 | 
            +
            ATARI_MAX_FRAMES = int(
         | 
| 115 | 
            +
                108000 / 4
         | 
| 116 | 
            +
            )  # 108000 is the max number of frames in an Atari game, divided by 4 to account for frame skipping
         | 
| 117 | 
            +
             | 
| 118 | 
            +
             | 
| 119 | 
            +
            def make_env(env_id, seed, num_envs, async_batch_size=1):
         | 
| 120 | 
            +
                def thunk():
         | 
| 121 | 
            +
                    envs = envpool.make(
         | 
| 122 | 
            +
                        env_id,
         | 
| 123 | 
            +
                        env_type="gym",
         | 
| 124 | 
            +
                        num_envs=num_envs,
         | 
| 125 | 
            +
                        batch_size=async_batch_size,
         | 
| 126 | 
            +
                        episodic_life=True,  # Espeholt et al., 2018, Tab. G.1
         | 
| 127 | 
            +
                        repeat_action_probability=0,  # Hessel et al., 2022 (Muesli) Tab. 10
         | 
| 128 | 
            +
                        noop_max=30,  # Espeholt et al., 2018, Tab. C.1 "Up to 30 no-ops at the beginning of each episode."
         | 
| 129 | 
            +
                        full_action_space=False,  # Espeholt et al., 2018, Appendix G., "Following related work, experts use game-specific action sets."
         | 
| 130 | 
            +
                        max_episode_steps=ATARI_MAX_FRAMES,  # Hessel et al. 2018 (Rainbow DQN), Table 3, Max frames per episode
         | 
| 131 | 
            +
                        reward_clip=True,
         | 
| 132 | 
            +
                        seed=seed,
         | 
| 133 | 
            +
                    )
         | 
| 134 | 
            +
                    envs.num_envs = num_envs
         | 
| 135 | 
            +
                    envs.single_action_space = envs.action_space
         | 
| 136 | 
            +
                    envs.single_observation_space = envs.observation_space
         | 
| 137 | 
            +
                    envs.is_vector_env = True
         | 
| 138 | 
            +
                    return envs
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                return thunk
         | 
| 141 | 
            +
             | 
| 142 | 
            +
             | 
| 143 | 
            +
            class ResidualBlock(nn.Module):
         | 
| 144 | 
            +
                channels: int
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                @nn.compact
         | 
| 147 | 
            +
                def __call__(self, x):
         | 
| 148 | 
            +
                    inputs = x
         | 
| 149 | 
            +
                    x = nn.relu(x)
         | 
| 150 | 
            +
                    x = nn.Conv(
         | 
| 151 | 
            +
                        self.channels,
         | 
| 152 | 
            +
                        kernel_size=(3, 3),
         | 
| 153 | 
            +
                    )(x)
         | 
| 154 | 
            +
                    x = nn.relu(x)
         | 
| 155 | 
            +
                    x = nn.Conv(
         | 
| 156 | 
            +
                        self.channels,
         | 
| 157 | 
            +
                        kernel_size=(3, 3),
         | 
| 158 | 
            +
                    )(x)
         | 
| 159 | 
            +
                    return x + inputs
         | 
| 160 | 
            +
             | 
| 161 | 
            +
             | 
| 162 | 
            +
            class ConvSequence(nn.Module):
         | 
| 163 | 
            +
                channels: int
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                @nn.compact
         | 
| 166 | 
            +
                def __call__(self, x):
         | 
| 167 | 
            +
                    x = nn.Conv(
         | 
| 168 | 
            +
                        self.channels,
         | 
| 169 | 
            +
                        kernel_size=(3, 3),
         | 
| 170 | 
            +
                    )(x)
         | 
| 171 | 
            +
                    x = nn.max_pool(x, window_shape=(3, 3), strides=(2, 2), padding="SAME")
         | 
| 172 | 
            +
                    x = ResidualBlock(self.channels)(x)
         | 
| 173 | 
            +
                    x = ResidualBlock(self.channels)(x)
         | 
| 174 | 
            +
                    return x
         | 
| 175 | 
            +
             | 
| 176 | 
            +
             | 
| 177 | 
            +
            class Network(nn.Module):
         | 
| 178 | 
            +
                channelss: Sequence[int] = (16, 32, 32)
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                @nn.compact
         | 
| 181 | 
            +
                def __call__(self, x):
         | 
| 182 | 
            +
                    x = jnp.transpose(x, (0, 2, 3, 1))
         | 
| 183 | 
            +
                    x = x / (255.0)
         | 
| 184 | 
            +
                    for channels in self.channelss:
         | 
| 185 | 
            +
                        x = ConvSequence(channels)(x)
         | 
| 186 | 
            +
                    x = nn.relu(x)
         | 
| 187 | 
            +
                    x = x.reshape((x.shape[0], -1))
         | 
| 188 | 
            +
                    x = nn.Dense(256, kernel_init=orthogonal(np.sqrt(2)), bias_init=constant(0.0))(x)
         | 
| 189 | 
            +
                    x = nn.relu(x)
         | 
| 190 | 
            +
                    return x
         | 
| 191 | 
            +
             | 
| 192 | 
            +
             | 
| 193 | 
            +
            class Critic(nn.Module):
         | 
| 194 | 
            +
                @nn.compact
         | 
| 195 | 
            +
                def __call__(self, x):
         | 
| 196 | 
            +
                    return nn.Dense(1, kernel_init=orthogonal(1), bias_init=constant(0.0))(x)
         | 
| 197 | 
            +
             | 
| 198 | 
            +
             | 
| 199 | 
            +
            class Actor(nn.Module):
         | 
| 200 | 
            +
                action_dim: int
         | 
| 201 | 
            +
             | 
| 202 | 
            +
                @nn.compact
         | 
| 203 | 
            +
                def __call__(self, x):
         | 
| 204 | 
            +
                    return nn.Dense(self.action_dim, kernel_init=orthogonal(0.01), bias_init=constant(0.0))(x)
         | 
| 205 | 
            +
             | 
| 206 | 
            +
             | 
| 207 | 
            +
            @flax.struct.dataclass
         | 
| 208 | 
            +
            class AgentParams:
         | 
| 209 | 
            +
                network_params: flax.core.FrozenDict
         | 
| 210 | 
            +
                actor_params: flax.core.FrozenDict
         | 
| 211 | 
            +
                critic_params: flax.core.FrozenDict
         | 
| 212 | 
            +
             | 
| 213 | 
            +
             | 
| 214 | 
            +
            @partial(jax.jit, static_argnums=(3))
         | 
| 215 | 
            +
            def get_action_and_value(
         | 
| 216 | 
            +
                params: TrainState,
         | 
| 217 | 
            +
                next_obs: np.ndarray,
         | 
| 218 | 
            +
                key: jax.random.PRNGKey,
         | 
| 219 | 
            +
                action_dim: int,
         | 
| 220 | 
            +
            ):
         | 
| 221 | 
            +
                next_obs = jnp.array(next_obs)
         | 
| 222 | 
            +
                hidden = Network().apply(params.network_params, next_obs)
         | 
| 223 | 
            +
                logits = Actor(action_dim).apply(params.actor_params, hidden)
         | 
| 224 | 
            +
                # sample action: Gumbel-softmax trick
         | 
| 225 | 
            +
                # see https://stats.stackexchange.com/questions/359442/sampling-from-a-categorical-distribution
         | 
| 226 | 
            +
                key, subkey = jax.random.split(key)
         | 
| 227 | 
            +
                u = jax.random.uniform(subkey, shape=logits.shape)
         | 
| 228 | 
            +
                action = jnp.argmax(logits - jnp.log(-jnp.log(u)), axis=1)
         | 
| 229 | 
            +
                logprob = jax.nn.log_softmax(logits)[jnp.arange(action.shape[0]), action]
         | 
| 230 | 
            +
                value = Critic().apply(params.critic_params, hidden)
         | 
| 231 | 
            +
                return next_obs, action, logprob, value.squeeze(), key
         | 
| 232 | 
            +
             | 
| 233 | 
            +
             | 
| 234 | 
            +
            def prepare_data(
         | 
| 235 | 
            +
                obs: list,
         | 
| 236 | 
            +
                dones: list,
         | 
| 237 | 
            +
                values: list,
         | 
| 238 | 
            +
                actions: list,
         | 
| 239 | 
            +
                logprobs: list,
         | 
| 240 | 
            +
                env_ids: list,
         | 
| 241 | 
            +
                rewards: list,
         | 
| 242 | 
            +
            ):
         | 
| 243 | 
            +
                obs = jnp.asarray(obs)
         | 
| 244 | 
            +
                dones = jnp.asarray(dones)
         | 
| 245 | 
            +
                values = jnp.asarray(values)
         | 
| 246 | 
            +
                actions = jnp.asarray(actions)
         | 
| 247 | 
            +
                logprobs = jnp.asarray(logprobs)
         | 
| 248 | 
            +
                env_ids = jnp.asarray(env_ids)
         | 
| 249 | 
            +
                rewards = jnp.asarray(rewards)
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                # TODO: in an unlikely event, one of the envs might have not stepped at all, which may results in unexpected behavior
         | 
| 252 | 
            +
                T, B = env_ids.shape
         | 
| 253 | 
            +
                index_ranges = jnp.arange(T * B, dtype=jnp.int32)
         | 
| 254 | 
            +
                next_index_ranges = jnp.zeros_like(index_ranges, dtype=jnp.int32)
         | 
| 255 | 
            +
                last_env_ids = jnp.zeros(args.local_num_envs, dtype=jnp.int32) - 1
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                def f(carry, x):
         | 
| 258 | 
            +
                    last_env_ids, next_index_ranges = carry
         | 
| 259 | 
            +
                    env_id, index_range = x
         | 
| 260 | 
            +
                    next_index_ranges = next_index_ranges.at[last_env_ids[env_id]].set(
         | 
| 261 | 
            +
                        jnp.where(last_env_ids[env_id] != -1, index_range, next_index_ranges[last_env_ids[env_id]])
         | 
| 262 | 
            +
                    )
         | 
| 263 | 
            +
                    last_env_ids = last_env_ids.at[env_id].set(index_range)
         | 
| 264 | 
            +
                    return (last_env_ids, next_index_ranges), None
         | 
| 265 | 
            +
             | 
| 266 | 
            +
                (last_env_ids, next_index_ranges), _ = jax.lax.scan(
         | 
| 267 | 
            +
                    f,
         | 
| 268 | 
            +
                    (last_env_ids, next_index_ranges),
         | 
| 269 | 
            +
                    (env_ids.reshape(-1), index_ranges),
         | 
| 270 | 
            +
                )
         | 
| 271 | 
            +
             | 
| 272 | 
            +
                # rewards is off by one time step
         | 
| 273 | 
            +
                rewards = rewards.reshape(-1)[next_index_ranges].reshape((args.num_steps) * args.async_update, args.async_batch_size)
         | 
| 274 | 
            +
                advantages, returns, _, final_env_ids = compute_gae(env_ids, rewards, values, dones)
         | 
| 275 | 
            +
                # b_inds = jnp.nonzero(final_env_ids.reshape(-1), size=(args.num_steps) * args.async_update * args.async_batch_size)[0] # useful for debugging
         | 
| 276 | 
            +
                b_obs = obs.reshape((-1,) + obs.shape[2:])
         | 
| 277 | 
            +
                b_actions = actions.reshape(-1)
         | 
| 278 | 
            +
                b_logprobs = logprobs.reshape(-1)
         | 
| 279 | 
            +
                b_advantages = advantages.reshape(-1)
         | 
| 280 | 
            +
                b_returns = returns.reshape(-1)
         | 
| 281 | 
            +
                return b_obs, b_actions, b_logprobs, b_advantages, b_returns
         | 
| 282 | 
            +
             | 
| 283 | 
            +
             | 
| 284 | 
            +
            def rollout(
         | 
| 285 | 
            +
                key: jax.random.PRNGKey,
         | 
| 286 | 
            +
                args,
         | 
| 287 | 
            +
                rollout_queue,
         | 
| 288 | 
            +
                params_queue: queue.Queue,
         | 
| 289 | 
            +
                writer,
         | 
| 290 | 
            +
                learner_devices,
         | 
| 291 | 
            +
            ):
         | 
| 292 | 
            +
                envs = make_env(args.env_id, args.seed, args.local_num_envs, args.async_batch_size)()
         | 
| 293 | 
            +
                len_actor_device_ids = len(args.actor_device_ids)
         | 
| 294 | 
            +
                global_step = 0
         | 
| 295 | 
            +
                # TRY NOT TO MODIFY: start the game
         | 
| 296 | 
            +
                start_time = time.time()
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                # put data in the last index
         | 
| 299 | 
            +
                episode_returns = np.zeros((args.local_num_envs,), dtype=np.float32)
         | 
| 300 | 
            +
                returned_episode_returns = np.zeros((args.local_num_envs,), dtype=np.float32)
         | 
| 301 | 
            +
                episode_lengths = np.zeros((args.local_num_envs,), dtype=np.float32)
         | 
| 302 | 
            +
                returned_episode_lengths = np.zeros((args.local_num_envs,), dtype=np.float32)
         | 
| 303 | 
            +
                envs.async_reset()
         | 
| 304 | 
            +
             | 
| 305 | 
            +
                params_queue_get_time = deque(maxlen=10)
         | 
| 306 | 
            +
                rollout_time = deque(maxlen=10)
         | 
| 307 | 
            +
                rollout_queue_put_time = deque(maxlen=10)
         | 
| 308 | 
            +
                actor_policy_version = 0
         | 
| 309 | 
            +
                for update in range(1, args.num_updates + 2):
         | 
| 310 | 
            +
                    # NOTE: This is a major difference from the sync version:
         | 
| 311 | 
            +
                    # at the end of the rollout phase, the sync version will have the next observation
         | 
| 312 | 
            +
                    # ready for the value bootstrap, but the async version will not have it.
         | 
| 313 | 
            +
                    # for this reason we do `num_steps + 1`` to get the extra states for value bootstrapping.
         | 
| 314 | 
            +
                    # but note that the extra states are not used for the loss computation in the next iteration,
         | 
| 315 | 
            +
                    # while the sync version will use the extra state for the loss computation.
         | 
| 316 | 
            +
                    update_time_start = time.time()
         | 
| 317 | 
            +
                    obs = []
         | 
| 318 | 
            +
                    dones = []
         | 
| 319 | 
            +
                    actions = []
         | 
| 320 | 
            +
                    logprobs = []
         | 
| 321 | 
            +
                    values = []
         | 
| 322 | 
            +
                    env_ids = []
         | 
| 323 | 
            +
                    rewards = []
         | 
| 324 | 
            +
                    truncations = []
         | 
| 325 | 
            +
                    terminations = []
         | 
| 326 | 
            +
                    env_recv_time = 0
         | 
| 327 | 
            +
                    inference_time = 0
         | 
| 328 | 
            +
                    storage_time = 0
         | 
| 329 | 
            +
                    env_send_time = 0
         | 
| 330 | 
            +
             | 
| 331 | 
            +
                    # NOTE: `update != 2` is actually IMPORTANT — it allows us to start running policy collection
         | 
| 332 | 
            +
                    # concurrently with the learning process. It also ensures the actor's policy version is only 1 step
         | 
| 333 | 
            +
                    # behind the learner's policy version
         | 
| 334 | 
            +
                    params_queue_get_time_start = time.time()
         | 
| 335 | 
            +
                    if update != 2:
         | 
| 336 | 
            +
                        params = params_queue.get()
         | 
| 337 | 
            +
                        actor_policy_version += 1
         | 
| 338 | 
            +
                    params_queue_get_time.append(time.time() - params_queue_get_time_start)
         | 
| 339 | 
            +
                    writer.add_scalar("stats/params_queue_get_time", np.mean(params_queue_get_time), global_step)
         | 
| 340 | 
            +
                    rollout_time_start = time.time()
         | 
| 341 | 
            +
                    for _ in range(
         | 
| 342 | 
            +
                        args.async_update, (args.num_steps + 1) * args.async_update
         | 
| 343 | 
            +
                    ):  # num_steps + 1 to get the states for value bootstrapping.
         | 
| 344 | 
            +
                        env_recv_time_start = time.time()
         | 
| 345 | 
            +
                        next_obs, next_reward, next_done, info = envs.recv()
         | 
| 346 | 
            +
                        env_recv_time += time.time() - env_recv_time_start
         | 
| 347 | 
            +
                        global_step += len(next_done) * len_actor_device_ids * args.world_size
         | 
| 348 | 
            +
                        env_id = info["env_id"]
         | 
| 349 | 
            +
             | 
| 350 | 
            +
                        inference_time_start = time.time()
         | 
| 351 | 
            +
                        next_obs, action, logprob, value, key = get_action_and_value(params, next_obs, key, envs.single_action_space.n)
         | 
| 352 | 
            +
                        inference_time += time.time() - inference_time_start
         | 
| 353 | 
            +
             | 
| 354 | 
            +
                        env_send_time_start = time.time()
         | 
| 355 | 
            +
                        envs.send(np.array(action), env_id)
         | 
| 356 | 
            +
                        env_send_time += time.time() - env_send_time_start
         | 
| 357 | 
            +
                        storage_time_start = time.time()
         | 
| 358 | 
            +
                        obs.append(next_obs)
         | 
| 359 | 
            +
                        dones.append(next_done)
         | 
| 360 | 
            +
                        values.append(value)
         | 
| 361 | 
            +
                        actions.append(action)
         | 
| 362 | 
            +
                        logprobs.append(logprob)
         | 
| 363 | 
            +
                        env_ids.append(env_id)
         | 
| 364 | 
            +
                        rewards.append(next_reward)
         | 
| 365 | 
            +
             | 
| 366 | 
            +
                        # info["TimeLimit.truncated"] has a bug https://github.com/sail-sg/envpool/issues/239
         | 
| 367 | 
            +
                        # so we use our own truncated flag
         | 
| 368 | 
            +
                        truncated = info["elapsed_step"] >= envs.spec.config.max_episode_steps
         | 
| 369 | 
            +
                        truncations.append(truncated)
         | 
| 370 | 
            +
                        terminations.append(info["terminated"])
         | 
| 371 | 
            +
                        episode_returns[env_id] += info["reward"]
         | 
| 372 | 
            +
                        returned_episode_returns[env_id] = np.where(
         | 
| 373 | 
            +
                            info["terminated"] + truncated, episode_returns[env_id], returned_episode_returns[env_id]
         | 
| 374 | 
            +
                        )
         | 
| 375 | 
            +
                        episode_returns[env_id] *= (1 - info["terminated"]) * (1 - truncated)
         | 
| 376 | 
            +
                        episode_lengths[env_id] += 1
         | 
| 377 | 
            +
                        returned_episode_lengths[env_id] = np.where(
         | 
| 378 | 
            +
                            info["terminated"] + truncated, episode_lengths[env_id], returned_episode_lengths[env_id]
         | 
| 379 | 
            +
                        )
         | 
| 380 | 
            +
                        episode_lengths[env_id] *= (1 - info["terminated"]) * (1 - truncated)
         | 
| 381 | 
            +
                        storage_time += time.time() - storage_time_start
         | 
| 382 | 
            +
                    if args.profile:
         | 
| 383 | 
            +
                        action.block_until_ready()
         | 
| 384 | 
            +
                    rollout_time.append(time.time() - rollout_time_start)
         | 
| 385 | 
            +
                    writer.add_scalar("stats/rollout_time", np.mean(rollout_time), global_step)
         | 
| 386 | 
            +
             | 
| 387 | 
            +
                    avg_episodic_return = np.mean(returned_episode_returns)
         | 
| 388 | 
            +
                    writer.add_scalar("charts/avg_episodic_return", avg_episodic_return, global_step)
         | 
| 389 | 
            +
                    writer.add_scalar("charts/avg_episodic_length", np.mean(returned_episode_lengths), global_step)
         | 
| 390 | 
            +
                    print(f"global_step={global_step}, avg_episodic_return={avg_episodic_return}")
         | 
| 391 | 
            +
                    print("SPS:", int(global_step / (time.time() - start_time)))
         | 
| 392 | 
            +
                    writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
         | 
| 393 | 
            +
             | 
| 394 | 
            +
                    writer.add_scalar("stats/truncations", np.sum(truncations), global_step)
         | 
| 395 | 
            +
                    writer.add_scalar("stats/terminations", np.sum(terminations), global_step)
         | 
| 396 | 
            +
                    writer.add_scalar("stats/env_recv_time", env_recv_time, global_step)
         | 
| 397 | 
            +
                    writer.add_scalar("stats/inference_time", inference_time, global_step)
         | 
| 398 | 
            +
                    writer.add_scalar("stats/storage_time", storage_time, global_step)
         | 
| 399 | 
            +
                    writer.add_scalar("stats/env_send_time", env_send_time, global_step)
         | 
| 400 | 
            +
             | 
| 401 | 
            +
                    payload = (
         | 
| 402 | 
            +
                        global_step,
         | 
| 403 | 
            +
                        actor_policy_version,
         | 
| 404 | 
            +
                        update,
         | 
| 405 | 
            +
                        obs,
         | 
| 406 | 
            +
                        dones,
         | 
| 407 | 
            +
                        values,
         | 
| 408 | 
            +
                        actions,
         | 
| 409 | 
            +
                        logprobs,
         | 
| 410 | 
            +
                        env_ids,
         | 
| 411 | 
            +
                        rewards,
         | 
| 412 | 
            +
                    )
         | 
| 413 | 
            +
                    if update == 1 or not args.test_actor_learner_throughput:
         | 
| 414 | 
            +
                        rollout_queue_put_time_start = time.time()
         | 
| 415 | 
            +
                        rollout_queue.put(payload)
         | 
| 416 | 
            +
                        rollout_queue_put_time.append(time.time() - rollout_queue_put_time_start)
         | 
| 417 | 
            +
                        writer.add_scalar("stats/rollout_queue_put_time", np.mean(rollout_queue_put_time), global_step)
         | 
| 418 | 
            +
             | 
| 419 | 
            +
                    writer.add_scalar(
         | 
| 420 | 
            +
                        "charts/SPS_update",
         | 
| 421 | 
            +
                        int(
         | 
| 422 | 
            +
                            args.local_num_envs
         | 
| 423 | 
            +
                            * args.num_steps
         | 
| 424 | 
            +
                            * len_actor_device_ids
         | 
| 425 | 
            +
                            * args.world_size
         | 
| 426 | 
            +
                            / (time.time() - update_time_start)
         | 
| 427 | 
            +
                        ),
         | 
| 428 | 
            +
                        global_step,
         | 
| 429 | 
            +
                    )
         | 
| 430 | 
            +
             | 
| 431 | 
            +
             | 
| 432 | 
            +
            @partial(jax.jit, static_argnums=(3))
         | 
| 433 | 
            +
            def get_action_and_value2(
         | 
| 434 | 
            +
                params: flax.core.FrozenDict,
         | 
| 435 | 
            +
                x: np.ndarray,
         | 
| 436 | 
            +
                action: np.ndarray,
         | 
| 437 | 
            +
                action_dim: int,
         | 
| 438 | 
            +
            ):
         | 
| 439 | 
            +
                hidden = Network().apply(params.network_params, x)
         | 
| 440 | 
            +
                logits = Actor(action_dim).apply(params.actor_params, hidden)
         | 
| 441 | 
            +
                logprob = jax.nn.log_softmax(logits)[jnp.arange(action.shape[0]), action]
         | 
| 442 | 
            +
                logits = logits - jax.scipy.special.logsumexp(logits, axis=-1, keepdims=True)
         | 
| 443 | 
            +
                logits = logits.clip(min=jnp.finfo(logits.dtype).min)
         | 
| 444 | 
            +
                p_log_p = logits * jax.nn.softmax(logits)
         | 
| 445 | 
            +
                entropy = -p_log_p.sum(-1)
         | 
| 446 | 
            +
                value = Critic().apply(params.critic_params, hidden).squeeze()
         | 
| 447 | 
            +
                return logprob, entropy, value
         | 
| 448 | 
            +
             | 
| 449 | 
            +
             | 
| 450 | 
            +
            @jax.jit
         | 
| 451 | 
            +
            def compute_gae(
         | 
| 452 | 
            +
                env_ids: np.ndarray,
         | 
| 453 | 
            +
                rewards: np.ndarray,
         | 
| 454 | 
            +
                values: np.ndarray,
         | 
| 455 | 
            +
                dones: np.ndarray,
         | 
| 456 | 
            +
            ):
         | 
| 457 | 
            +
                dones = jnp.asarray(dones)
         | 
| 458 | 
            +
                values = jnp.asarray(values)
         | 
| 459 | 
            +
                env_ids = jnp.asarray(env_ids)
         | 
| 460 | 
            +
                rewards = jnp.asarray(rewards)
         | 
| 461 | 
            +
             | 
| 462 | 
            +
                _, B = env_ids.shape
         | 
| 463 | 
            +
                final_env_id_checked = jnp.zeros(args.local_num_envs, jnp.int32) - 1
         | 
| 464 | 
            +
                final_env_ids = jnp.zeros(B, jnp.int32)
         | 
| 465 | 
            +
                advantages = jnp.zeros(B)
         | 
| 466 | 
            +
                lastgaelam = jnp.zeros(args.local_num_envs)
         | 
| 467 | 
            +
                lastdones = jnp.zeros(args.local_num_envs) + 1
         | 
| 468 | 
            +
                lastvalues = jnp.zeros(args.local_num_envs)
         | 
| 469 | 
            +
             | 
| 470 | 
            +
                def compute_gae_once(carry, x):
         | 
| 471 | 
            +
                    lastvalues, lastdones, advantages, lastgaelam, final_env_ids, final_env_id_checked = carry
         | 
| 472 | 
            +
                    (
         | 
| 473 | 
            +
                        done,
         | 
| 474 | 
            +
                        value,
         | 
| 475 | 
            +
                        eid,
         | 
| 476 | 
            +
                        reward,
         | 
| 477 | 
            +
                    ) = x
         | 
| 478 | 
            +
                    nextnonterminal = 1.0 - lastdones[eid]
         | 
| 479 | 
            +
                    nextvalues = lastvalues[eid]
         | 
| 480 | 
            +
                    delta = jnp.where(final_env_id_checked[eid] == -1, 0, reward + args.gamma * nextvalues * nextnonterminal - value)
         | 
| 481 | 
            +
                    advantages = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam[eid]
         | 
| 482 | 
            +
                    final_env_ids = jnp.where(final_env_id_checked[eid] == 1, 1, 0)
         | 
| 483 | 
            +
                    final_env_id_checked = final_env_id_checked.at[eid].set(
         | 
| 484 | 
            +
                        jnp.where(final_env_id_checked[eid] == -1, 1, final_env_id_checked[eid])
         | 
| 485 | 
            +
                    )
         | 
| 486 | 
            +
             | 
| 487 | 
            +
                    # the last_ variables keeps track of the actual `num_steps`
         | 
| 488 | 
            +
                    lastgaelam = lastgaelam.at[eid].set(advantages)
         | 
| 489 | 
            +
                    lastdones = lastdones.at[eid].set(done)
         | 
| 490 | 
            +
                    lastvalues = lastvalues.at[eid].set(value)
         | 
| 491 | 
            +
                    return (lastvalues, lastdones, advantages, lastgaelam, final_env_ids, final_env_id_checked), (
         | 
| 492 | 
            +
                        advantages,
         | 
| 493 | 
            +
                        final_env_ids,
         | 
| 494 | 
            +
                    )
         | 
| 495 | 
            +
             | 
| 496 | 
            +
                (_, _, _, _, final_env_ids, final_env_id_checked), (advantages, final_env_ids) = jax.lax.scan(
         | 
| 497 | 
            +
                    compute_gae_once,
         | 
| 498 | 
            +
                    (
         | 
| 499 | 
            +
                        lastvalues,
         | 
| 500 | 
            +
                        lastdones,
         | 
| 501 | 
            +
                        advantages,
         | 
| 502 | 
            +
                        lastgaelam,
         | 
| 503 | 
            +
                        final_env_ids,
         | 
| 504 | 
            +
                        final_env_id_checked,
         | 
| 505 | 
            +
                    ),
         | 
| 506 | 
            +
                    (
         | 
| 507 | 
            +
                        dones,
         | 
| 508 | 
            +
                        values,
         | 
| 509 | 
            +
                        env_ids,
         | 
| 510 | 
            +
                        rewards,
         | 
| 511 | 
            +
                    ),
         | 
| 512 | 
            +
                    reverse=True,
         | 
| 513 | 
            +
                )
         | 
| 514 | 
            +
                return advantages, advantages + values, final_env_id_checked, final_env_ids
         | 
| 515 | 
            +
             | 
| 516 | 
            +
             | 
| 517 | 
            +
            def ppo_loss(params, x, a, logp, mb_advantages, mb_returns, action_dim):
         | 
| 518 | 
            +
                newlogprob, entropy, newvalue = get_action_and_value2(params, x, a, action_dim)
         | 
| 519 | 
            +
                logratio = newlogprob - logp
         | 
| 520 | 
            +
                ratio = jnp.exp(logratio)
         | 
| 521 | 
            +
                approx_kl = ((ratio - 1) - logratio).mean()
         | 
| 522 | 
            +
             | 
| 523 | 
            +
                if args.norm_adv:
         | 
| 524 | 
            +
                    mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)
         | 
| 525 | 
            +
             | 
| 526 | 
            +
                # Policy loss
         | 
| 527 | 
            +
                pg_loss1 = -mb_advantages * ratio
         | 
| 528 | 
            +
                pg_loss2 = -mb_advantages * jnp.clip(ratio, 1 - args.clip_coef, 1 + args.clip_coef)
         | 
| 529 | 
            +
                pg_loss = jnp.maximum(pg_loss1, pg_loss2).mean()
         | 
| 530 | 
            +
             | 
| 531 | 
            +
                # Value loss
         | 
| 532 | 
            +
                v_loss = 0.5 * ((newvalue - mb_returns) ** 2).mean()
         | 
| 533 | 
            +
             | 
| 534 | 
            +
                entropy_loss = entropy.mean()
         | 
| 535 | 
            +
                loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef
         | 
| 536 | 
            +
                return loss, (pg_loss, v_loss, entropy_loss, jax.lax.stop_gradient(approx_kl))
         | 
| 537 | 
            +
             | 
| 538 | 
            +
             | 
| 539 | 
            +
            @partial(jax.jit, static_argnums=(6))
         | 
| 540 | 
            +
            def single_device_update(
         | 
| 541 | 
            +
                agent_state: TrainState,
         | 
| 542 | 
            +
                b_obs,
         | 
| 543 | 
            +
                b_actions,
         | 
| 544 | 
            +
                b_logprobs,
         | 
| 545 | 
            +
                b_advantages,
         | 
| 546 | 
            +
                b_returns,
         | 
| 547 | 
            +
                action_dim,
         | 
| 548 | 
            +
                key: jax.random.PRNGKey,
         | 
| 549 | 
            +
            ):
         | 
| 550 | 
            +
                ppo_loss_grad_fn = jax.value_and_grad(ppo_loss, has_aux=True)
         | 
| 551 | 
            +
             | 
| 552 | 
            +
                def update_epoch(carry, _):
         | 
| 553 | 
            +
                    agent_state, key = carry
         | 
| 554 | 
            +
                    key, subkey = jax.random.split(key)
         | 
| 555 | 
            +
             | 
| 556 | 
            +
                    # taken from: https://github.com/google/brax/blob/main/brax/training/agents/ppo/train.py
         | 
| 557 | 
            +
                    def convert_data(x: jnp.ndarray):
         | 
| 558 | 
            +
                        x = jax.random.permutation(subkey, x)
         | 
| 559 | 
            +
                        x = jnp.reshape(x, (args.num_minibatches, -1) + x.shape[1:])
         | 
| 560 | 
            +
                        return x
         | 
| 561 | 
            +
             | 
| 562 | 
            +
                    def update_minibatch(agent_state, minibatch):
         | 
| 563 | 
            +
                        mb_obs, mb_actions, mb_logprobs, mb_advantages, mb_returns = minibatch
         | 
| 564 | 
            +
                        (loss, (pg_loss, v_loss, entropy_loss, approx_kl)), grads = ppo_loss_grad_fn(
         | 
| 565 | 
            +
                            agent_state.params,
         | 
| 566 | 
            +
                            mb_obs,
         | 
| 567 | 
            +
                            mb_actions,
         | 
| 568 | 
            +
                            mb_logprobs,
         | 
| 569 | 
            +
                            mb_advantages,
         | 
| 570 | 
            +
                            mb_returns,
         | 
| 571 | 
            +
                            action_dim,
         | 
| 572 | 
            +
                        )
         | 
| 573 | 
            +
                        grads = jax.lax.pmean(grads, axis_name="local_devices")
         | 
| 574 | 
            +
                        agent_state = agent_state.apply_gradients(grads=grads)
         | 
| 575 | 
            +
                        return agent_state, (loss, pg_loss, v_loss, entropy_loss, approx_kl, grads)
         | 
| 576 | 
            +
             | 
| 577 | 
            +
                    agent_state, (loss, pg_loss, v_loss, entropy_loss, approx_kl, grads) = jax.lax.scan(
         | 
| 578 | 
            +
                        update_minibatch,
         | 
| 579 | 
            +
                        agent_state,
         | 
| 580 | 
            +
                        (
         | 
| 581 | 
            +
                            convert_data(b_obs),
         | 
| 582 | 
            +
                            convert_data(b_actions),
         | 
| 583 | 
            +
                            convert_data(b_logprobs),
         | 
| 584 | 
            +
                            convert_data(b_advantages),
         | 
| 585 | 
            +
                            convert_data(b_returns),
         | 
| 586 | 
            +
                        ),
         | 
| 587 | 
            +
                    )
         | 
| 588 | 
            +
                    return (agent_state, key), (loss, pg_loss, v_loss, entropy_loss, approx_kl, grads)
         | 
| 589 | 
            +
             | 
| 590 | 
            +
                (agent_state, key), (loss, pg_loss, v_loss, entropy_loss, approx_kl, _) = jax.lax.scan(
         | 
| 591 | 
            +
                    update_epoch, (agent_state, key), (), length=args.update_epochs
         | 
| 592 | 
            +
                )
         | 
| 593 | 
            +
                return agent_state, loss, pg_loss, v_loss, entropy_loss, approx_kl, key
         | 
| 594 | 
            +
             | 
| 595 | 
            +
             | 
| 596 | 
            +
            if __name__ == "__main__":
         | 
| 597 | 
            +
                args = parse_args()
         | 
| 598 | 
            +
                if args.distributed:
         | 
| 599 | 
            +
                    jax.distributed.initialize(
         | 
| 600 | 
            +
                        local_device_ids=range(len(args.learner_device_ids) + len(args.actor_device_ids)),
         | 
| 601 | 
            +
                    )
         | 
| 602 | 
            +
                    print(list(range(len(args.learner_device_ids) + len(args.actor_device_ids))))
         | 
| 603 | 
            +
             | 
| 604 | 
            +
                args.world_size = jax.process_count()
         | 
| 605 | 
            +
                args.local_rank = jax.process_index()
         | 
| 606 | 
            +
                args.num_envs = args.local_num_envs * args.world_size
         | 
| 607 | 
            +
                args.batch_size = args.local_batch_size * args.world_size
         | 
| 608 | 
            +
                args.minibatch_size = args.local_minibatch_size * args.world_size
         | 
| 609 | 
            +
                args.num_updates = args.total_timesteps // (args.local_batch_size * args.world_size)
         | 
| 610 | 
            +
                args.async_update = int(args.local_num_envs / args.async_batch_size)
         | 
| 611 | 
            +
                local_devices = jax.local_devices()
         | 
| 612 | 
            +
                global_devices = jax.devices()
         | 
| 613 | 
            +
                learner_devices = [local_devices[d_id] for d_id in args.learner_device_ids]
         | 
| 614 | 
            +
                actor_devices = [local_devices[d_id] for d_id in args.actor_device_ids]
         | 
| 615 | 
            +
                global_learner_decices = [
         | 
| 616 | 
            +
                    global_devices[d_id + process_index * len(local_devices)]
         | 
| 617 | 
            +
                    for process_index in range(args.world_size)
         | 
| 618 | 
            +
                    for d_id in args.learner_device_ids
         | 
| 619 | 
            +
                ]
         | 
| 620 | 
            +
                print("global_learner_decices", global_learner_decices)
         | 
| 621 | 
            +
                args.global_learner_decices = [str(item) for item in global_learner_decices]
         | 
| 622 | 
            +
                args.actor_devices = [str(item) for item in actor_devices]
         | 
| 623 | 
            +
                args.learner_devices = [str(item) for item in learner_devices]
         | 
| 624 | 
            +
             | 
| 625 | 
            +
                run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{uuid.uuid4()}"
         | 
| 626 | 
            +
                if args.track and args.local_rank == 0:
         | 
| 627 | 
            +
                    import wandb
         | 
| 628 | 
            +
             | 
| 629 | 
            +
                    wandb.init(
         | 
| 630 | 
            +
                        project=args.wandb_project_name,
         | 
| 631 | 
            +
                        entity=args.wandb_entity,
         | 
| 632 | 
            +
                        sync_tensorboard=True,
         | 
| 633 | 
            +
                        config=vars(args),
         | 
| 634 | 
            +
                        name=run_name,
         | 
| 635 | 
            +
                        monitor_gym=True,
         | 
| 636 | 
            +
                        save_code=True,
         | 
| 637 | 
            +
                    )
         | 
| 638 | 
            +
                writer = SummaryWriter(f"runs/{run_name}")
         | 
| 639 | 
            +
                writer.add_text(
         | 
| 640 | 
            +
                    "hyperparameters",
         | 
| 641 | 
            +
                    "|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
         | 
| 642 | 
            +
                )
         | 
| 643 | 
            +
             | 
| 644 | 
            +
                # TRY NOT TO MODIFY: seeding
         | 
| 645 | 
            +
                random.seed(args.seed)
         | 
| 646 | 
            +
                np.random.seed(args.seed)
         | 
| 647 | 
            +
                key = jax.random.PRNGKey(args.seed)
         | 
| 648 | 
            +
                key, network_key, actor_key, critic_key = jax.random.split(key, 4)
         | 
| 649 | 
            +
             | 
| 650 | 
            +
                # env setup
         | 
| 651 | 
            +
                envs = make_env(args.env_id, args.seed, args.local_num_envs, args.async_batch_size)()
         | 
| 652 | 
            +
                assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported"
         | 
| 653 | 
            +
             | 
| 654 | 
            +
                def linear_schedule(count):
         | 
| 655 | 
            +
                    # anneal learning rate linearly after one training iteration which contains
         | 
| 656 | 
            +
                    # (args.num_minibatches * args.update_epochs) gradient updates
         | 
| 657 | 
            +
                    frac = 1.0 - (count // (args.num_minibatches * args.update_epochs)) / args.num_updates
         | 
| 658 | 
            +
                    return args.learning_rate * frac
         | 
| 659 | 
            +
             | 
| 660 | 
            +
                network = Network()
         | 
| 661 | 
            +
                actor = Actor(action_dim=envs.single_action_space.n)
         | 
| 662 | 
            +
                critic = Critic()
         | 
| 663 | 
            +
                network_params = network.init(network_key, np.array([envs.single_observation_space.sample()]))
         | 
| 664 | 
            +
                agent_state = TrainState.create(
         | 
| 665 | 
            +
                    apply_fn=None,
         | 
| 666 | 
            +
                    params=AgentParams(
         | 
| 667 | 
            +
                        network_params,
         | 
| 668 | 
            +
                        actor.init(actor_key, network.apply(network_params, np.array([envs.single_observation_space.sample()]))),
         | 
| 669 | 
            +
                        critic.init(critic_key, network.apply(network_params, np.array([envs.single_observation_space.sample()]))),
         | 
| 670 | 
            +
                    ),
         | 
| 671 | 
            +
                    tx=optax.chain(
         | 
| 672 | 
            +
                        optax.clip_by_global_norm(args.max_grad_norm),
         | 
| 673 | 
            +
                        optax.inject_hyperparams(optax.adam)(
         | 
| 674 | 
            +
                            learning_rate=linear_schedule if args.anneal_lr else args.learning_rate, eps=1e-5
         | 
| 675 | 
            +
                        ),
         | 
| 676 | 
            +
                    ),
         | 
| 677 | 
            +
                )
         | 
| 678 | 
            +
                agent_state = flax.jax_utils.replicate(agent_state, devices=learner_devices)
         | 
| 679 | 
            +
             | 
| 680 | 
            +
                multi_device_update = jax.pmap(
         | 
| 681 | 
            +
                    single_device_update,
         | 
| 682 | 
            +
                    axis_name="local_devices",
         | 
| 683 | 
            +
                    devices=global_learner_decices,
         | 
| 684 | 
            +
                    in_axes=(0, 0, 0, 0, 0, 0, None, None),
         | 
| 685 | 
            +
                    out_axes=(0, 0, 0, 0, 0, 0, None),
         | 
| 686 | 
            +
                    static_broadcasted_argnums=(6),
         | 
| 687 | 
            +
                )
         | 
| 688 | 
            +
             | 
| 689 | 
            +
                rollout_queue = queue.Queue(maxsize=1)
         | 
| 690 | 
            +
                params_queues = []
         | 
| 691 | 
            +
                for d_idx, d_id in enumerate(args.actor_device_ids):
         | 
| 692 | 
            +
                    params_queue = queue.Queue(maxsize=1)
         | 
| 693 | 
            +
                    params_queue.put(jax.device_put(flax.jax_utils.unreplicate(agent_state.params), local_devices[d_id]))
         | 
| 694 | 
            +
                    threading.Thread(
         | 
| 695 | 
            +
                        target=rollout,
         | 
| 696 | 
            +
                        args=(
         | 
| 697 | 
            +
                            jax.device_put(key, local_devices[d_id]),
         | 
| 698 | 
            +
                            args,
         | 
| 699 | 
            +
                            rollout_queue,
         | 
| 700 | 
            +
                            params_queue,
         | 
| 701 | 
            +
                            writer,
         | 
| 702 | 
            +
                            learner_devices,
         | 
| 703 | 
            +
                        ),
         | 
| 704 | 
            +
                    ).start()
         | 
| 705 | 
            +
                    params_queues.append(params_queue)
         | 
| 706 | 
            +
             | 
| 707 | 
            +
                rollout_queue_get_time = deque(maxlen=10)
         | 
| 708 | 
            +
                data_transfer_time = deque(maxlen=10)
         | 
| 709 | 
            +
                learner_policy_version = 0
         | 
| 710 | 
            +
                prepare_data = jax.jit(prepare_data, device=learner_devices[0])
         | 
| 711 | 
            +
                while True:
         | 
| 712 | 
            +
                    learner_policy_version += 1
         | 
| 713 | 
            +
                    if learner_policy_version == 1 or not args.test_actor_learner_throughput:
         | 
| 714 | 
            +
                        rollout_queue_get_time_start = time.time()
         | 
| 715 | 
            +
                        (
         | 
| 716 | 
            +
                            global_step,
         | 
| 717 | 
            +
                            actor_policy_version,
         | 
| 718 | 
            +
                            update,
         | 
| 719 | 
            +
                            obs,
         | 
| 720 | 
            +
                            dones,
         | 
| 721 | 
            +
                            values,
         | 
| 722 | 
            +
                            actions,
         | 
| 723 | 
            +
                            logprobs,
         | 
| 724 | 
            +
                            env_ids,
         | 
| 725 | 
            +
                            rewards,
         | 
| 726 | 
            +
                        ) = rollout_queue.get()
         | 
| 727 | 
            +
                        rollout_queue_get_time.append(time.time() - rollout_queue_get_time_start)
         | 
| 728 | 
            +
                        writer.add_scalar("stats/rollout_queue_get_time", np.mean(rollout_queue_get_time), global_step)
         | 
| 729 | 
            +
             | 
| 730 | 
            +
                    data_transfer_time_start = time.time()
         | 
| 731 | 
            +
                    b_obs, b_actions, b_logprobs, b_advantages, b_returns = prepare_data(
         | 
| 732 | 
            +
                        obs,
         | 
| 733 | 
            +
                        dones,
         | 
| 734 | 
            +
                        values,
         | 
| 735 | 
            +
                        actions,
         | 
| 736 | 
            +
                        logprobs,
         | 
| 737 | 
            +
                        env_ids,
         | 
| 738 | 
            +
                        rewards,
         | 
| 739 | 
            +
                    )
         | 
| 740 | 
            +
                    b_obs = jnp.array_split(b_obs, len(learner_devices))
         | 
| 741 | 
            +
                    b_actions = jnp.array_split(b_actions, len(learner_devices))
         | 
| 742 | 
            +
                    b_logprobs = jnp.array_split(b_logprobs, len(learner_devices))
         | 
| 743 | 
            +
                    b_advantages = jnp.array_split(b_advantages, len(learner_devices))
         | 
| 744 | 
            +
                    b_returns = jnp.array_split(b_returns, len(learner_devices))
         | 
| 745 | 
            +
                    data_transfer_time.append(time.time() - data_transfer_time_start)
         | 
| 746 | 
            +
                    writer.add_scalar("stats/data_transfer_time", np.mean(data_transfer_time), global_step)
         | 
| 747 | 
            +
             | 
| 748 | 
            +
                    training_time_start = time.time()
         | 
| 749 | 
            +
                    (agent_state, loss, pg_loss, v_loss, entropy_loss, approx_kl, key) = multi_device_update(
         | 
| 750 | 
            +
                        agent_state,
         | 
| 751 | 
            +
                        jax.device_put_sharded(b_obs, learner_devices),
         | 
| 752 | 
            +
                        jax.device_put_sharded(b_actions, learner_devices),
         | 
| 753 | 
            +
                        jax.device_put_sharded(b_logprobs, learner_devices),
         | 
| 754 | 
            +
                        jax.device_put_sharded(b_advantages, learner_devices),
         | 
| 755 | 
            +
                        jax.device_put_sharded(b_returns, learner_devices),
         | 
| 756 | 
            +
                        envs.single_action_space.n,
         | 
| 757 | 
            +
                        key,
         | 
| 758 | 
            +
                    )
         | 
| 759 | 
            +
                    if learner_policy_version == 1 or not args.test_actor_learner_throughput:
         | 
| 760 | 
            +
                        for d_idx, d_id in enumerate(args.actor_device_ids):
         | 
| 761 | 
            +
                            params_queues[d_idx].put(jax.device_put(flax.jax_utils.unreplicate(agent_state.params), local_devices[d_id]))
         | 
| 762 | 
            +
                    if args.profile:
         | 
| 763 | 
            +
                        v_loss[-1, -1, -1].block_until_ready()
         | 
| 764 | 
            +
                    writer.add_scalar("stats/training_time", time.time() - training_time_start, global_step)
         | 
| 765 | 
            +
                    writer.add_scalar("stats/rollout_queue_size", rollout_queue.qsize(), global_step)
         | 
| 766 | 
            +
                    writer.add_scalar("stats/params_queue_size", params_queue.qsize(), global_step)
         | 
| 767 | 
            +
                    print(
         | 
| 768 | 
            +
                        global_step,
         | 
| 769 | 
            +
                        f"actor_policy_version={actor_policy_version}, actor_update={update}, learner_policy_version={learner_policy_version}, training time: {time.time() - training_time_start}s",
         | 
| 770 | 
            +
                    )
         | 
| 771 | 
            +
             | 
| 772 | 
            +
                    # TRY NOT TO MODIFY: record rewards for plotting purposes
         | 
| 773 | 
            +
                    writer.add_scalar("charts/learning_rate", agent_state.opt_state[1].hyperparams["learning_rate"][0].item(), global_step)
         | 
| 774 | 
            +
                    writer.add_scalar("losses/value_loss", v_loss[-1, -1, -1].item(), global_step)
         | 
| 775 | 
            +
                    writer.add_scalar("losses/policy_loss", pg_loss[-1, -1, -1].item(), global_step)
         | 
| 776 | 
            +
                    writer.add_scalar("losses/entropy", entropy_loss[-1, -1, -1].item(), global_step)
         | 
| 777 | 
            +
                    writer.add_scalar("losses/approx_kl", approx_kl[-1, -1, -1].item(), global_step)
         | 
| 778 | 
            +
                    writer.add_scalar("losses/loss", loss[-1, -1, -1].item(), global_step)
         | 
| 779 | 
            +
                    if update >= args.num_updates:
         | 
| 780 | 
            +
                        break
         | 
| 781 | 
            +
             | 
| 782 | 
            +
                if args.save_model and args.local_rank == 0:
         | 
| 783 | 
            +
                    agent_state = flax.jax_utils.unreplicate(agent_state)
         | 
| 784 | 
            +
                    model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
         | 
| 785 | 
            +
                    with open(model_path, "wb") as f:
         | 
| 786 | 
            +
                        f.write(
         | 
| 787 | 
            +
                            flax.serialization.to_bytes([    vars(args),    [        agent_state.params.network_params,        agent_state.params.actor_params,        agent_state.params.critic_params,    ],])
         | 
| 788 | 
            +
                        )
         | 
| 789 | 
            +
                    print(f"model saved to {model_path}")
         | 
| 790 | 
            +
                    from cleanrl_utils.evals.ppo_envpool_jax_eval import evaluate
         | 
| 791 | 
            +
             | 
| 792 | 
            +
                    episodic_returns = evaluate(
         | 
| 793 | 
            +
                        model_path,
         | 
| 794 | 
            +
                        make_env,
         | 
| 795 | 
            +
                        args.env_id,
         | 
| 796 | 
            +
                        eval_episodes=10,
         | 
| 797 | 
            +
                        run_name=f"{run_name}-eval",
         | 
| 798 | 
            +
                        Model=(Network, Actor, Critic),
         | 
| 799 | 
            +
                    )
         | 
| 800 | 
            +
                    for idx, episodic_return in enumerate(episodic_returns):
         | 
| 801 | 
            +
                        writer.add_scalar("eval/episodic_return", episodic_return, idx)
         | 
| 802 | 
            +
             | 
| 803 | 
            +
                    if args.upload_model:
         | 
| 804 | 
            +
                        from cleanrl_utils.huggingface import push_to_hub
         | 
| 805 | 
            +
             | 
| 806 | 
            +
                        repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
         | 
| 807 | 
            +
                        repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
         | 
| 808 | 
            +
                        push_to_hub(
         | 
| 809 | 
            +
                            args,
         | 
| 810 | 
            +
                            episodic_returns,
         | 
| 811 | 
            +
                            repo_id,
         | 
| 812 | 
            +
                            "PPO",
         | 
| 813 | 
            +
                            f"runs/{run_name}",
         | 
| 814 | 
            +
                            f"videos/{run_name}-eval",
         | 
| 815 | 
            +
                            extra_dependencies=["jax", "envpool", "atari"],
         | 
| 816 | 
            +
                        )
         | 
| 817 | 
            +
             | 
| 818 | 
            +
                envs.close()
         | 
| 819 | 
            +
                writer.close()
         | 
    	
        events.out.tfevents.1676646224.ip-26-0-139-51.3674704.0
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:1876e73e636514106e4ec10150d62442908dd79fdb8ee35145488bab671fccea
         | 
| 3 | 
            +
            size 4754791
         | 
    	
        poetry.lock
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        pyproject.toml
    ADDED
    
    | @@ -0,0 +1,178 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            [tool.poetry]
         | 
| 2 | 
            +
            name = "cleanrl"
         | 
| 3 | 
            +
            version = "1.1.0"
         | 
| 4 | 
            +
            description = "High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features"
         | 
| 5 | 
            +
            authors = ["Costa Huang <[email protected]>"]
         | 
| 6 | 
            +
            packages = [
         | 
| 7 | 
            +
                { include = "cleanrl" },
         | 
| 8 | 
            +
                { include = "cleanrl_utils" },
         | 
| 9 | 
            +
            ]
         | 
| 10 | 
            +
            keywords = ["reinforcement", "machine", "learning", "research"]
         | 
| 11 | 
            +
            license="MIT"
         | 
| 12 | 
            +
            readme = "README.md"
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            [tool.poetry.dependencies]
         | 
| 15 | 
            +
            python = ">=3.7.1,<3.10"
         | 
| 16 | 
            +
            tensorboard = "^2.10.0"
         | 
| 17 | 
            +
            wandb = "^0.13.6"
         | 
| 18 | 
            +
            gym = "0.23.1"
         | 
| 19 | 
            +
            torch = ">=1.12.1"
         | 
| 20 | 
            +
            stable-baselines3 = "1.2.0"
         | 
| 21 | 
            +
            gymnasium = "^0.26.3"
         | 
| 22 | 
            +
            moviepy = "^1.0.3"
         | 
| 23 | 
            +
            pygame = "2.1.0"
         | 
| 24 | 
            +
            huggingface-hub = "^0.11.1"
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            ale-py = {version = "0.7.4", optional = true}
         | 
| 27 | 
            +
            AutoROM = {extras = ["accept-rom-license"], version = "^0.4.2"}
         | 
| 28 | 
            +
            opencv-python = {version = "^4.6.0.66", optional = true}
         | 
| 29 | 
            +
            pybullet = {version = "3.1.8", optional = true}
         | 
| 30 | 
            +
            procgen = {version = "^0.10.7", optional = true}
         | 
| 31 | 
            +
            pytest = {version = "^7.1.3", optional = true}
         | 
| 32 | 
            +
            mujoco = {version = "^2.2", optional = true}
         | 
| 33 | 
            +
            imageio = {version = "^2.14.1", optional = true}
         | 
| 34 | 
            +
            free-mujoco-py = {version = "^2.1.6", optional = true}
         | 
| 35 | 
            +
            mkdocs-material = {version = "^8.4.3", optional = true}
         | 
| 36 | 
            +
            markdown-include = {version = "^0.7.0", optional = true}
         | 
| 37 | 
            +
            jax = {version = "^0.3.17", optional = true}
         | 
| 38 | 
            +
            jaxlib = {version = "^0.3.15", optional = true}
         | 
| 39 | 
            +
            flax = {version = "^0.6.0", optional = true}
         | 
| 40 | 
            +
            optuna = {version = "^3.0.1", optional = true}
         | 
| 41 | 
            +
            optuna-dashboard = {version = "^0.7.2", optional = true}
         | 
| 42 | 
            +
            rich = {version = "<12.0", optional = true}
         | 
| 43 | 
            +
            envpool = {version = "^0.8.1", optional = true}
         | 
| 44 | 
            +
            PettingZoo = {version = "1.18.1", optional = true}
         | 
| 45 | 
            +
            SuperSuit = {version = "3.4.0", optional = true}
         | 
| 46 | 
            +
            multi-agent-ale-py = {version = "0.1.11", optional = true}
         | 
| 47 | 
            +
            boto3 = {version = "^1.24.70", optional = true}
         | 
| 48 | 
            +
            awscli = {version = "^1.25.71", optional = true}
         | 
| 49 | 
            +
            shimmy = {version = "^0.1.0", optional = true}
         | 
| 50 | 
            +
            dm-control = {version = "^1.0.8", optional = true}
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            [tool.poetry.group.dev.dependencies]
         | 
| 53 | 
            +
            pre-commit = "^2.20.0"
         | 
| 54 | 
            +
             | 
| 55 | 
            +
            [tool.poetry.group.atari]
         | 
| 56 | 
            +
            optional = true
         | 
| 57 | 
            +
            [tool.poetry.group.atari.dependencies]
         | 
| 58 | 
            +
            ale-py = "0.7.4"
         | 
| 59 | 
            +
            AutoROM = {extras = ["accept-rom-license"], version = "^0.4.2"}
         | 
| 60 | 
            +
            opencv-python = "^4.6.0.66"
         | 
| 61 | 
            +
             | 
| 62 | 
            +
            [tool.poetry.group.pybullet]
         | 
| 63 | 
            +
            optional = true
         | 
| 64 | 
            +
            [tool.poetry.group.pybullet.dependencies]
         | 
| 65 | 
            +
            pybullet = "3.1.8"
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            [tool.poetry.group.procgen]
         | 
| 68 | 
            +
            optional = true
         | 
| 69 | 
            +
            [tool.poetry.group.procgen.dependencies]
         | 
| 70 | 
            +
            procgen = "^0.10.7"
         | 
| 71 | 
            +
             | 
| 72 | 
            +
            [tool.poetry.group.pytest]
         | 
| 73 | 
            +
            optional = true
         | 
| 74 | 
            +
            [tool.poetry.group.pytest.dependencies]
         | 
| 75 | 
            +
            pytest = "^7.1.3"
         | 
| 76 | 
            +
             | 
| 77 | 
            +
            [tool.poetry.group.mujoco]
         | 
| 78 | 
            +
            optional = true
         | 
| 79 | 
            +
            [tool.poetry.group.mujoco.dependencies]
         | 
| 80 | 
            +
            mujoco = "^2.2"
         | 
| 81 | 
            +
            imageio = "^2.14.1"
         | 
| 82 | 
            +
             | 
| 83 | 
            +
            [tool.poetry.group.mujoco_py]
         | 
| 84 | 
            +
            optional = true
         | 
| 85 | 
            +
            [tool.poetry.group.mujoco_py.dependencies]
         | 
| 86 | 
            +
            free-mujoco-py = "^2.1.6"
         | 
| 87 | 
            +
             | 
| 88 | 
            +
            [tool.poetry.group.docs]
         | 
| 89 | 
            +
            optional = true
         | 
| 90 | 
            +
            [tool.poetry.group.docs.dependencies]
         | 
| 91 | 
            +
            mkdocs-material = "^8.4.3"
         | 
| 92 | 
            +
            markdown-include = "^0.7.0"
         | 
| 93 | 
            +
             | 
| 94 | 
            +
            [tool.poetry.group.jax]
         | 
| 95 | 
            +
            optional = true
         | 
| 96 | 
            +
            [tool.poetry.group.jax.dependencies]
         | 
| 97 | 
            +
            jax = "^0.3.17"
         | 
| 98 | 
            +
            jaxlib = "^0.3.15"
         | 
| 99 | 
            +
            flax = "^0.6.0"
         | 
| 100 | 
            +
             | 
| 101 | 
            +
            [tool.poetry.group.optuna]
         | 
| 102 | 
            +
            optional = true
         | 
| 103 | 
            +
            [tool.poetry.group.optuna.dependencies]
         | 
| 104 | 
            +
            optuna = "^3.0.1"
         | 
| 105 | 
            +
            optuna-dashboard = "^0.7.2"
         | 
| 106 | 
            +
            rich = "<12.0"
         | 
| 107 | 
            +
             | 
| 108 | 
            +
            [tool.poetry.group.envpool]
         | 
| 109 | 
            +
            optional = true
         | 
| 110 | 
            +
            [tool.poetry.group.envpool.dependencies]
         | 
| 111 | 
            +
            envpool = "^0.8.1"
         | 
| 112 | 
            +
             | 
| 113 | 
            +
            [tool.poetry.group.pettingzoo]
         | 
| 114 | 
            +
            optional = true
         | 
| 115 | 
            +
            [tool.poetry.group.pettingzoo.dependencies]
         | 
| 116 | 
            +
            PettingZoo = "1.18.1"
         | 
| 117 | 
            +
            SuperSuit = "3.4.0"
         | 
| 118 | 
            +
            multi-agent-ale-py = "0.1.11"
         | 
| 119 | 
            +
             | 
| 120 | 
            +
            [tool.poetry.group.cloud]
         | 
| 121 | 
            +
            optional = true
         | 
| 122 | 
            +
            [tool.poetry.group.cloud.dependencies]
         | 
| 123 | 
            +
            boto3 = "^1.24.70"
         | 
| 124 | 
            +
            awscli = "^1.25.71"
         | 
| 125 | 
            +
             | 
| 126 | 
            +
            [tool.poetry.group.isaacgym]
         | 
| 127 | 
            +
            optional = true
         | 
| 128 | 
            +
            [tool.poetry.group.isaacgym.dependencies]
         | 
| 129 | 
            +
            isaacgymenvs = {git = "https://github.com/vwxyzjn/IsaacGymEnvs.git", rev = "poetry"}
         | 
| 130 | 
            +
            isaacgym = {path = "cleanrl/ppo_continuous_action_isaacgym/isaacgym", develop = true}
         | 
| 131 | 
            +
             | 
| 132 | 
            +
            [tool.poetry.group.dm_control]
         | 
| 133 | 
            +
            optional = true
         | 
| 134 | 
            +
            [tool.poetry.group.dm_control.dependencies]
         | 
| 135 | 
            +
            shimmy = "^0.1.0"
         | 
| 136 | 
            +
            dm-control = "^1.0.8"
         | 
| 137 | 
            +
            mujoco = "^2.2"
         | 
| 138 | 
            +
             | 
| 139 | 
            +
            [build-system]
         | 
| 140 | 
            +
            requires = ["poetry-core"]
         | 
| 141 | 
            +
            build-backend = "poetry.core.masonry.api"
         | 
| 142 | 
            +
             | 
| 143 | 
            +
            [tool.poetry.extras]
         | 
| 144 | 
            +
            atari = ["ale-py", "AutoROM", "opencv-python"]
         | 
| 145 | 
            +
            pybullet = ["pybullet"]
         | 
| 146 | 
            +
            procgen = ["procgen"]
         | 
| 147 | 
            +
            plot = ["pandas", "seaborn"]
         | 
| 148 | 
            +
            pytest = ["pytest"]
         | 
| 149 | 
            +
            mujoco = ["mujoco", "imageio"]
         | 
| 150 | 
            +
            mujoco_py = ["free-mujoco-py"]
         | 
| 151 | 
            +
            jax = ["jax", "jaxlib", "flax"]
         | 
| 152 | 
            +
            docs = ["mkdocs-material", "markdown-include"]
         | 
| 153 | 
            +
            envpool = ["envpool"]
         | 
| 154 | 
            +
            optuna = ["optuna", "optuna-dashboard", "rich"]
         | 
| 155 | 
            +
            pettingzoo = ["PettingZoo", "SuperSuit", "multi-agent-ale-py"]
         | 
| 156 | 
            +
            cloud = ["boto3", "awscli"]
         | 
| 157 | 
            +
            dm_control = ["shimmy", "dm-control", "mujoco"]
         | 
| 158 | 
            +
             | 
| 159 | 
            +
            # dependencies for algorithm variant (useful when you want to run a specific algorithm)
         | 
| 160 | 
            +
            dqn = []
         | 
| 161 | 
            +
            dqn_atari = ["ale-py", "AutoROM", "opencv-python"]
         | 
| 162 | 
            +
            dqn_jax = ["jax", "jaxlib", "flax"]
         | 
| 163 | 
            +
            dqn_atari_jax = [
         | 
| 164 | 
            +
                "ale-py", "AutoROM", "opencv-python", # atari
         | 
| 165 | 
            +
                "jax", "jaxlib", "flax" # jax
         | 
| 166 | 
            +
            ]
         | 
| 167 | 
            +
            c51 = []
         | 
| 168 | 
            +
            c51_atari = ["ale-py", "AutoROM", "opencv-python"]
         | 
| 169 | 
            +
            c51_jax = ["jax", "jaxlib", "flax"]
         | 
| 170 | 
            +
            c51_atari_jax = [
         | 
| 171 | 
            +
                "ale-py", "AutoROM", "opencv-python", # atari
         | 
| 172 | 
            +
                "jax", "jaxlib", "flax" # jax
         | 
| 173 | 
            +
            ]
         | 
| 174 | 
            +
            ppo_atari_envpool_xla_jax_scan = [
         | 
| 175 | 
            +
                "ale-py", "AutoROM", "opencv-python", # atari
         | 
| 176 | 
            +
                "jax", "jaxlib", "flax", # jax
         | 
| 177 | 
            +
                "envpool", # envpool
         | 
| 178 | 
            +
            ]
         | 
    	
        replay.mp4
    ADDED
    
    | Binary file (220 kB). View file | 
|  | 
    	
        videos/Jamesbond-v5__cleanba_ppo_envpool_impala_atari_wrapper__2__247bfa8d-1065-4058-9c9d-43d430e56f04-eval/0.mp4
    ADDED
    
    | Binary file (220 kB). View file | 
|  | 
