pushing model
Browse files- README.md +10 -11
- events.out.tfevents.1675632418.ip-26-0-130-50.751165.0 → events.out.tfevents.1676021299.ip-26-0-141-43.3980941.0 +2 -2
- replay.mp4 +0 -0
- sebulba_ppo_envpool_impala_atari_wrapper.cleanrl_model +2 -2
- sebulba_ppo_envpool_impala_atari_wrapper.py +835 -0
- videos/Krull-v5__sebulba_ppo_envpool_impala_atari_wrapper__1__d3265ef6-fd44-4f39-b7d2-fab7dad655a4-eval/0.mp4 +0 -0
- videos/Krull-v5__sebulba_ppo_envpool_impala_atari_wrapper__1__d9dbfee2-82e0-42f5-a745-e43d95f82116-eval/0.mp4 +0 -0
README.md
CHANGED
|
@@ -16,7 +16,7 @@ model-index:
|
|
| 16 |
type: Krull-v5
|
| 17 |
metrics:
|
| 18 |
- type: mean_reward
|
| 19 |
-
value:
|
| 20 |
name: mean_reward
|
| 21 |
verified: false
|
| 22 |
---
|
|
@@ -42,20 +42,20 @@ Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) f
|
|
| 42 |
## Command to reproduce the training
|
| 43 |
|
| 44 |
```bash
|
| 45 |
-
curl -OL https://huggingface.co/cleanrl/Krull-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/
|
| 46 |
curl -OL https://huggingface.co/cleanrl/Krull-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
|
| 47 |
curl -OL https://huggingface.co/cleanrl/Krull-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
|
| 48 |
poetry install --all-extras
|
| 49 |
-
python
|
| 50 |
```
|
| 51 |
|
| 52 |
# Hyperparameters
|
| 53 |
```python
|
| 54 |
{'actor_device_ids': [0],
|
| 55 |
'anneal_lr': True,
|
| 56 |
-
'async_batch_size':
|
| 57 |
-
'async_update':
|
| 58 |
-
'batch_size':
|
| 59 |
'capture_video': False,
|
| 60 |
'clip_coef': 0.1,
|
| 61 |
'cuda': True,
|
|
@@ -65,17 +65,16 @@ python sebulba_ppo_envpool.py --exp-name sebulba_ppo_envpool_impala_atari_wrappe
|
|
| 65 |
'gae_lambda': 0.95,
|
| 66 |
'gamma': 0.99,
|
| 67 |
'hf_entity': 'cleanrl',
|
| 68 |
-
'learner_device_ids': [1, 2, 3, 4],
|
| 69 |
'learning_rate': 0.00025,
|
| 70 |
'max_grad_norm': 0.5,
|
| 71 |
-
'minibatch_size':
|
| 72 |
'norm_adv': True,
|
| 73 |
'num_actor_threads': 1,
|
| 74 |
-
'num_envs':
|
| 75 |
'num_minibatches': 4,
|
| 76 |
'num_steps': 128,
|
| 77 |
-
'num_updates':
|
| 78 |
-
'params_queue_timeout': 0.02,
|
| 79 |
'profile': False,
|
| 80 |
'save_model': True,
|
| 81 |
'seed': 1,
|
|
|
|
| 16 |
type: Krull-v5
|
| 17 |
metrics:
|
| 18 |
- type: mean_reward
|
| 19 |
+
value: 9266.00 +/- 2015.72
|
| 20 |
name: mean_reward
|
| 21 |
verified: false
|
| 22 |
---
|
|
|
|
| 42 |
## Command to reproduce the training
|
| 43 |
|
| 44 |
```bash
|
| 45 |
+
curl -OL https://huggingface.co/cleanrl/Krull-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
|
| 46 |
curl -OL https://huggingface.co/cleanrl/Krull-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
|
| 47 |
curl -OL https://huggingface.co/cleanrl/Krull-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
|
| 48 |
poetry install --all-extras
|
| 49 |
+
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Krull-v5 --seed 1
|
| 50 |
```
|
| 51 |
|
| 52 |
# Hyperparameters
|
| 53 |
```python
|
| 54 |
{'actor_device_ids': [0],
|
| 55 |
'anneal_lr': True,
|
| 56 |
+
'async_batch_size': 20,
|
| 57 |
+
'async_update': 3,
|
| 58 |
+
'batch_size': 7680,
|
| 59 |
'capture_video': False,
|
| 60 |
'clip_coef': 0.1,
|
| 61 |
'cuda': True,
|
|
|
|
| 65 |
'gae_lambda': 0.95,
|
| 66 |
'gamma': 0.99,
|
| 67 |
'hf_entity': 'cleanrl',
|
| 68 |
+
'learner_device_ids': [1, 2, 3, 4, 5, 6],
|
| 69 |
'learning_rate': 0.00025,
|
| 70 |
'max_grad_norm': 0.5,
|
| 71 |
+
'minibatch_size': 1920,
|
| 72 |
'norm_adv': True,
|
| 73 |
'num_actor_threads': 1,
|
| 74 |
+
'num_envs': 60,
|
| 75 |
'num_minibatches': 4,
|
| 76 |
'num_steps': 128,
|
| 77 |
+
'num_updates': 6510,
|
|
|
|
| 78 |
'profile': False,
|
| 79 |
'save_model': True,
|
| 80 |
'seed': 1,
|
events.out.tfevents.1675632418.ip-26-0-130-50.751165.0 → events.out.tfevents.1676021299.ip-26-0-141-43.3980941.0
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:02824176885fec12ad23000e5d9102de9d37c8cf7b0a3d0f735c9bb3e1cb0b5c
|
| 3 |
+
size 9506851
|
replay.mp4
CHANGED
|
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
|
sebulba_ppo_envpool_impala_atari_wrapper.cleanrl_model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6d1e5c773b5f08c73d45b9074d82915449badbc7560f229a9c9dfd6df3609950
|
| 3 |
+
size 4378337
|
sebulba_ppo_envpool_impala_atari_wrapper.py
ADDED
|
@@ -0,0 +1,835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
* 🥼 Test throughput (see docs):
|
| 3 |
+
* python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 --profile --test-actor-learner-throughput --total-timesteps 500000 --track
|
| 4 |
+
* python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 --profile --test-actor-learner-throughput --total-timesteps 500000 --track
|
| 5 |
+
* this will help us diagnose the throughput issue
|
| 6 |
+
* python sebulba_ppo_envpool.py --actor-device-ids 0 --num-actor-threads 2 --learner-device-ids 1 --profile --test-actor-learner-throughput --total-timesteps 500000 --track
|
| 7 |
+
* 🔥 Best performance so far (more GPUs -> faster)
|
| 8 |
+
* python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 0 --track
|
| 9 |
+
* python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 0 1 --track
|
| 10 |
+
* python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 --track
|
| 11 |
+
* python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --track
|
| 12 |
+
* python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track
|
| 13 |
+
* (this actually doesn't work that well) python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 7 --num-envs 70 --async-batch-size 35 --track
|
| 14 |
+
"""
|
| 15 |
+
# docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_atari_envpool_async_jax_scan_impalanet_machadopy
|
| 16 |
+
import argparse
|
| 17 |
+
import os
|
| 18 |
+
import random
|
| 19 |
+
import time
|
| 20 |
+
import uuid
|
| 21 |
+
import warnings
|
| 22 |
+
from collections import deque
|
| 23 |
+
from distutils.util import strtobool
|
| 24 |
+
from functools import partial
|
| 25 |
+
from typing import Sequence
|
| 26 |
+
|
| 27 |
+
os.environ[
|
| 28 |
+
"XLA_PYTHON_CLIENT_MEM_FRACTION"
|
| 29 |
+
] = "0.6" # see https://github.com/google/jax/discussions/6332#discussioncomment-1279991
|
| 30 |
+
os.environ["XLA_FLAGS"] = "--xla_cpu_multi_thread_eigen=false " "intra_op_parallelism_threads=1"
|
| 31 |
+
import multiprocessing as mp
|
| 32 |
+
import queue
|
| 33 |
+
import threading
|
| 34 |
+
|
| 35 |
+
import envpool
|
| 36 |
+
import flax
|
| 37 |
+
import flax.linen as nn
|
| 38 |
+
import gym
|
| 39 |
+
import jax
|
| 40 |
+
import jax.numpy as jnp
|
| 41 |
+
import numpy as np
|
| 42 |
+
import optax
|
| 43 |
+
from flax.linen.initializers import constant, orthogonal
|
| 44 |
+
from flax.training.train_state import TrainState
|
| 45 |
+
from torch.utils.tensorboard import SummaryWriter
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def parse_args():
|
| 49 |
+
# fmt: off
|
| 50 |
+
parser = argparse.ArgumentParser()
|
| 51 |
+
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
|
| 52 |
+
help="the name of this experiment")
|
| 53 |
+
parser.add_argument("--seed", type=int, default=1,
|
| 54 |
+
help="seed of the experiment")
|
| 55 |
+
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
| 56 |
+
help="if toggled, `torch.backends.cudnn.deterministic=False`")
|
| 57 |
+
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
| 58 |
+
help="if toggled, cuda will be enabled by default")
|
| 59 |
+
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
| 60 |
+
help="if toggled, this experiment will be tracked with Weights and Biases")
|
| 61 |
+
parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
|
| 62 |
+
help="the wandb's project name")
|
| 63 |
+
parser.add_argument("--wandb-entity", type=str, default=None,
|
| 64 |
+
help="the entity (team) of wandb's project")
|
| 65 |
+
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
| 66 |
+
help="weather to capture videos of the agent performances (check out `videos` folder)")
|
| 67 |
+
parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
| 68 |
+
help="whether to save model into the `runs/{run_name}` folder")
|
| 69 |
+
parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
| 70 |
+
help="whether to upload the saved model to huggingface")
|
| 71 |
+
parser.add_argument("--hf-entity", type=str, default="",
|
| 72 |
+
help="the user or org name of the model repository from the Hugging Face Hub")
|
| 73 |
+
|
| 74 |
+
# Algorithm specific arguments
|
| 75 |
+
parser.add_argument("--env-id", type=str, default="Breakout-v5",
|
| 76 |
+
help="the id of the environment")
|
| 77 |
+
parser.add_argument("--total-timesteps", type=int, default=50000000,
|
| 78 |
+
help="total timesteps of the experiments")
|
| 79 |
+
parser.add_argument("--learning-rate", type=float, default=2.5e-4,
|
| 80 |
+
help="the learning rate of the optimizer")
|
| 81 |
+
parser.add_argument("--num-envs", type=int, default=60,
|
| 82 |
+
help="the number of parallel game environments")
|
| 83 |
+
parser.add_argument("--async-batch-size", type=int, default=20,
|
| 84 |
+
help="the envpool's batch size in the async mode")
|
| 85 |
+
parser.add_argument("--num-steps", type=int, default=128,
|
| 86 |
+
help="the number of steps to run in each environment per policy rollout")
|
| 87 |
+
parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
| 88 |
+
help="Toggle learning rate annealing for policy and value networks")
|
| 89 |
+
parser.add_argument("--gamma", type=float, default=0.99,
|
| 90 |
+
help="the discount factor gamma")
|
| 91 |
+
parser.add_argument("--gae-lambda", type=float, default=0.95,
|
| 92 |
+
help="the lambda for the general advantage estimation")
|
| 93 |
+
parser.add_argument("--num-minibatches", type=int, default=4,
|
| 94 |
+
help="the number of mini-batches")
|
| 95 |
+
parser.add_argument("--update-epochs", type=int, default=4,
|
| 96 |
+
help="the K epochs to update the policy")
|
| 97 |
+
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
| 98 |
+
help="Toggles advantages normalization")
|
| 99 |
+
parser.add_argument("--clip-coef", type=float, default=0.1,
|
| 100 |
+
help="the surrogate clipping coefficient")
|
| 101 |
+
parser.add_argument("--ent-coef", type=float, default=0.01,
|
| 102 |
+
help="coefficient of the entropy")
|
| 103 |
+
parser.add_argument("--vf-coef", type=float, default=0.5,
|
| 104 |
+
help="coefficient of the value function")
|
| 105 |
+
parser.add_argument("--max-grad-norm", type=float, default=0.5,
|
| 106 |
+
help="the maximum norm for the gradient clipping")
|
| 107 |
+
parser.add_argument("--target-kl", type=float, default=None,
|
| 108 |
+
help="the target KL divergence threshold")
|
| 109 |
+
|
| 110 |
+
parser.add_argument("--actor-device-ids", type=int, nargs="+", default=[0], # type is actually List[int]
|
| 111 |
+
help="the device ids that actor workers will use")
|
| 112 |
+
parser.add_argument("--learner-device-ids", type=int, nargs="+", default=[0], # type is actually List[int]
|
| 113 |
+
help="the device ids that actor workers will use")
|
| 114 |
+
parser.add_argument("--num-actor-threads", type=int, default=1,
|
| 115 |
+
help="the number of actor threads")
|
| 116 |
+
parser.add_argument("--profile", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
| 117 |
+
help="whether to call block_until_ready() for profiling")
|
| 118 |
+
parser.add_argument("--test-actor-learner-throughput", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
| 119 |
+
help="whether to test actor-learner throughput by removing the actor-learner communication")
|
| 120 |
+
args = parser.parse_args()
|
| 121 |
+
args.batch_size = int(args.num_envs * args.num_steps)
|
| 122 |
+
args.minibatch_size = int(args.batch_size // args.num_minibatches)
|
| 123 |
+
args.num_updates = args.total_timesteps // args.batch_size
|
| 124 |
+
args.async_update = int(args.num_envs / args.async_batch_size)
|
| 125 |
+
assert len(args.actor_device_ids) == 1, "only 1 actor_device_ids is supported now"
|
| 126 |
+
if args.num_actor_threads > 1:
|
| 127 |
+
warnings.warn("⚠️ !!!! `num_actor_threads` > 1 is not tested with learning; see docs for detail")
|
| 128 |
+
# fmt: on
|
| 129 |
+
return args
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
ATARI_MAX_FRAMES = int(
|
| 133 |
+
108000 / 4
|
| 134 |
+
) # 108000 is the max number of frames in an Atari game, divided by 4 to account for frame skipping
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def make_env(env_id, seed, num_envs, async_batch_size=1, num_threads=None, thread_affinity_offset=-1):
|
| 138 |
+
def thunk():
|
| 139 |
+
envs = envpool.make(
|
| 140 |
+
env_id,
|
| 141 |
+
env_type="gym",
|
| 142 |
+
num_envs=num_envs,
|
| 143 |
+
num_threads=num_threads if num_threads is not None else async_batch_size,
|
| 144 |
+
thread_affinity_offset=thread_affinity_offset,
|
| 145 |
+
batch_size=async_batch_size,
|
| 146 |
+
episodic_life=True, # Espeholt et al., 2018, Tab. G.1
|
| 147 |
+
repeat_action_probability=0, # Hessel et al., 2022 (Muesli) Tab. 10
|
| 148 |
+
noop_max=30, # Espeholt et al., 2018, Tab. C.1 "Up to 30 no-ops at the beginning of each episode."
|
| 149 |
+
full_action_space=False, # Espeholt et al., 2018, Appendix G., "Following related work, experts use game-specific action sets."
|
| 150 |
+
max_episode_steps=ATARI_MAX_FRAMES, # Hessel et al. 2018 (Rainbow DQN), Table 3, Max frames per episode
|
| 151 |
+
reward_clip=True,
|
| 152 |
+
seed=seed,
|
| 153 |
+
)
|
| 154 |
+
envs.num_envs = num_envs
|
| 155 |
+
envs.single_action_space = envs.action_space
|
| 156 |
+
envs.single_observation_space = envs.observation_space
|
| 157 |
+
envs.is_vector_env = True
|
| 158 |
+
return envs
|
| 159 |
+
|
| 160 |
+
return thunk
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
class ResidualBlock(nn.Module):
|
| 164 |
+
channels: int
|
| 165 |
+
|
| 166 |
+
@nn.compact
|
| 167 |
+
def __call__(self, x):
|
| 168 |
+
inputs = x
|
| 169 |
+
x = nn.relu(x)
|
| 170 |
+
x = nn.Conv(
|
| 171 |
+
self.channels,
|
| 172 |
+
kernel_size=(3, 3),
|
| 173 |
+
)(x)
|
| 174 |
+
x = nn.relu(x)
|
| 175 |
+
x = nn.Conv(
|
| 176 |
+
self.channels,
|
| 177 |
+
kernel_size=(3, 3),
|
| 178 |
+
)(x)
|
| 179 |
+
return x + inputs
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
class ConvSequence(nn.Module):
|
| 183 |
+
channels: int
|
| 184 |
+
|
| 185 |
+
@nn.compact
|
| 186 |
+
def __call__(self, x):
|
| 187 |
+
x = nn.Conv(
|
| 188 |
+
self.channels,
|
| 189 |
+
kernel_size=(3, 3),
|
| 190 |
+
)(x)
|
| 191 |
+
x = nn.max_pool(x, window_shape=(3, 3), strides=(2, 2), padding="SAME")
|
| 192 |
+
x = ResidualBlock(self.channels)(x)
|
| 193 |
+
x = ResidualBlock(self.channels)(x)
|
| 194 |
+
return x
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
class Network(nn.Module):
|
| 198 |
+
channelss: Sequence[int] = (16, 32, 32)
|
| 199 |
+
|
| 200 |
+
@nn.compact
|
| 201 |
+
def __call__(self, x):
|
| 202 |
+
x = jnp.transpose(x, (0, 2, 3, 1))
|
| 203 |
+
x = x / (255.0)
|
| 204 |
+
for channels in self.channelss:
|
| 205 |
+
x = ConvSequence(channels)(x)
|
| 206 |
+
x = nn.relu(x)
|
| 207 |
+
x = x.reshape((x.shape[0], -1))
|
| 208 |
+
x = nn.Dense(256, kernel_init=orthogonal(np.sqrt(2)), bias_init=constant(0.0))(x)
|
| 209 |
+
x = nn.relu(x)
|
| 210 |
+
return x
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
class Critic(nn.Module):
|
| 214 |
+
@nn.compact
|
| 215 |
+
def __call__(self, x):
|
| 216 |
+
return nn.Dense(1, kernel_init=orthogonal(1), bias_init=constant(0.0))(x)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
class Actor(nn.Module):
|
| 220 |
+
action_dim: int
|
| 221 |
+
|
| 222 |
+
@nn.compact
|
| 223 |
+
def __call__(self, x):
|
| 224 |
+
return nn.Dense(self.action_dim, kernel_init=orthogonal(0.01), bias_init=constant(0.0))(x)
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
@flax.struct.dataclass
|
| 228 |
+
class AgentParams:
|
| 229 |
+
network_params: flax.core.FrozenDict
|
| 230 |
+
actor_params: flax.core.FrozenDict
|
| 231 |
+
critic_params: flax.core.FrozenDict
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
@partial(jax.jit, static_argnums=(3))
|
| 235 |
+
def get_action_and_value(
|
| 236 |
+
params: TrainState,
|
| 237 |
+
next_obs: np.ndarray,
|
| 238 |
+
key: jax.random.PRNGKey,
|
| 239 |
+
action_dim: int,
|
| 240 |
+
):
|
| 241 |
+
hidden = Network().apply(params.network_params, next_obs)
|
| 242 |
+
logits = Actor(action_dim).apply(params.actor_params, hidden)
|
| 243 |
+
# sample action: Gumbel-softmax trick
|
| 244 |
+
# see https://stats.stackexchange.com/questions/359442/sampling-from-a-categorical-distribution
|
| 245 |
+
key, subkey = jax.random.split(key)
|
| 246 |
+
u = jax.random.uniform(subkey, shape=logits.shape)
|
| 247 |
+
action = jnp.argmax(logits - jnp.log(-jnp.log(u)), axis=1)
|
| 248 |
+
logprob = jax.nn.log_softmax(logits)[jnp.arange(action.shape[0]), action]
|
| 249 |
+
value = Critic().apply(params.critic_params, hidden)
|
| 250 |
+
return action, logprob, value.squeeze(), key
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
@jax.jit
|
| 254 |
+
def prepare_data(
|
| 255 |
+
obs: list,
|
| 256 |
+
dones: list,
|
| 257 |
+
values: list,
|
| 258 |
+
actions: list,
|
| 259 |
+
logprobs: list,
|
| 260 |
+
env_ids: list,
|
| 261 |
+
rewards: list,
|
| 262 |
+
):
|
| 263 |
+
obs = jnp.asarray(obs)
|
| 264 |
+
dones = jnp.asarray(dones)
|
| 265 |
+
values = jnp.asarray(values)
|
| 266 |
+
actions = jnp.asarray(actions)
|
| 267 |
+
logprobs = jnp.asarray(logprobs)
|
| 268 |
+
env_ids = jnp.asarray(env_ids)
|
| 269 |
+
rewards = jnp.asarray(rewards)
|
| 270 |
+
|
| 271 |
+
# TODO: in an unlikely event, one of the envs might have not stepped at all, which may results in unexpected behavior
|
| 272 |
+
T, B = env_ids.shape
|
| 273 |
+
index_ranges = jnp.arange(T * B, dtype=jnp.int32)
|
| 274 |
+
next_index_ranges = jnp.zeros_like(index_ranges, dtype=jnp.int32)
|
| 275 |
+
last_env_ids = jnp.zeros(args.num_envs, dtype=jnp.int32) - 1
|
| 276 |
+
|
| 277 |
+
def f(carry, x):
|
| 278 |
+
last_env_ids, next_index_ranges = carry
|
| 279 |
+
env_id, index_range = x
|
| 280 |
+
next_index_ranges = next_index_ranges.at[last_env_ids[env_id]].set(
|
| 281 |
+
jnp.where(last_env_ids[env_id] != -1, index_range, next_index_ranges[last_env_ids[env_id]])
|
| 282 |
+
)
|
| 283 |
+
last_env_ids = last_env_ids.at[env_id].set(index_range)
|
| 284 |
+
return (last_env_ids, next_index_ranges), None
|
| 285 |
+
|
| 286 |
+
(last_env_ids, next_index_ranges), _ = jax.lax.scan(
|
| 287 |
+
f,
|
| 288 |
+
(last_env_ids, next_index_ranges),
|
| 289 |
+
(env_ids.reshape(-1), index_ranges),
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
# rewards is off by one time step
|
| 293 |
+
rewards = rewards.reshape(-1)[next_index_ranges].reshape((args.num_steps) * args.async_update, args.async_batch_size)
|
| 294 |
+
advantages, returns, _, final_env_ids = compute_gae(env_ids, rewards, values, dones)
|
| 295 |
+
# b_inds = jnp.nonzero(final_env_ids.reshape(-1), size=(args.num_steps) * args.async_update * args.async_batch_size)[0] # useful for debugging
|
| 296 |
+
b_obs = obs.reshape((-1,) + obs.shape[2:])
|
| 297 |
+
b_actions = actions.reshape(-1)
|
| 298 |
+
b_logprobs = logprobs.reshape(-1)
|
| 299 |
+
b_advantages = advantages.reshape(-1)
|
| 300 |
+
b_returns = returns.reshape(-1)
|
| 301 |
+
return b_obs, b_actions, b_logprobs, b_advantages, b_returns
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
def rollout(
|
| 305 |
+
i,
|
| 306 |
+
num_threads, # =None,
|
| 307 |
+
thread_affinity_offset, # =-1,
|
| 308 |
+
key: jax.random.PRNGKey,
|
| 309 |
+
args,
|
| 310 |
+
rollout_queue,
|
| 311 |
+
params_queue: queue.Queue,
|
| 312 |
+
writer,
|
| 313 |
+
learner_devices,
|
| 314 |
+
):
|
| 315 |
+
envs = make_env(args.env_id, args.seed, args.num_envs, args.async_batch_size, num_threads, thread_affinity_offset)()
|
| 316 |
+
len_actor_device_ids = len(args.actor_device_ids)
|
| 317 |
+
global_step = 0
|
| 318 |
+
# TRY NOT TO MODIFY: start the game
|
| 319 |
+
start_time = time.time()
|
| 320 |
+
|
| 321 |
+
# put data in the last index
|
| 322 |
+
episode_returns = np.zeros((args.num_envs,), dtype=np.float32)
|
| 323 |
+
returned_episode_returns = np.zeros((args.num_envs,), dtype=np.float32)
|
| 324 |
+
episode_lengths = np.zeros((args.num_envs,), dtype=np.float32)
|
| 325 |
+
returned_episode_lengths = np.zeros((args.num_envs,), dtype=np.float32)
|
| 326 |
+
envs.async_reset()
|
| 327 |
+
|
| 328 |
+
params_queue_get_time = deque(maxlen=10)
|
| 329 |
+
rollout_time = deque(maxlen=10)
|
| 330 |
+
data_transfer_time = deque(maxlen=10)
|
| 331 |
+
rollout_queue_put_time = deque(maxlen=10)
|
| 332 |
+
actor_policy_version = 0
|
| 333 |
+
for update in range(1, args.num_updates + 2):
|
| 334 |
+
# NOTE: This is a major difference from the sync version:
|
| 335 |
+
# at the end of the rollout phase, the sync version will have the next observation
|
| 336 |
+
# ready for the value bootstrap, but the async version will not have it.
|
| 337 |
+
# for this reason we do `num_steps + 1`` to get the extra states for value bootstrapping.
|
| 338 |
+
# but note that the extra states are not used for the loss computation in the next iteration,
|
| 339 |
+
# while the sync version will use the extra state for the loss computation.
|
| 340 |
+
update_time_start = time.time()
|
| 341 |
+
obs = []
|
| 342 |
+
dones = []
|
| 343 |
+
actions = []
|
| 344 |
+
logprobs = []
|
| 345 |
+
values = []
|
| 346 |
+
env_ids = []
|
| 347 |
+
rewards = []
|
| 348 |
+
truncations = []
|
| 349 |
+
terminations = []
|
| 350 |
+
env_recv_time = 0
|
| 351 |
+
inference_time = 0
|
| 352 |
+
storage_time = 0
|
| 353 |
+
env_send_time = 0
|
| 354 |
+
|
| 355 |
+
# NOTE: `update != 2` is actually IMPORTANT — it allows us to start running policy collection
|
| 356 |
+
# concurrently with the learning process. It also ensures the actor's policy version is only 1 step
|
| 357 |
+
# behind the learner's policy version
|
| 358 |
+
params_queue_get_time_start = time.time()
|
| 359 |
+
if update != 2:
|
| 360 |
+
params = params_queue.get()
|
| 361 |
+
actor_policy_version += 1
|
| 362 |
+
params_queue_get_time.append(time.time() - params_queue_get_time_start)
|
| 363 |
+
writer.add_scalar("stats/params_queue_get_time", np.mean(params_queue_get_time), global_step)
|
| 364 |
+
rollout_time_start = time.time()
|
| 365 |
+
for _ in range(
|
| 366 |
+
args.async_update, (args.num_steps + 1) * args.async_update
|
| 367 |
+
): # num_steps + 1 to get the states for value bootstrapping.
|
| 368 |
+
env_recv_time_start = time.time()
|
| 369 |
+
next_obs, next_reward, next_done, info = envs.recv()
|
| 370 |
+
env_recv_time += time.time() - env_recv_time_start
|
| 371 |
+
global_step += len(next_done) * args.num_actor_threads * len_actor_device_ids
|
| 372 |
+
env_id = info["env_id"]
|
| 373 |
+
|
| 374 |
+
inference_time_start = time.time()
|
| 375 |
+
action, logprob, value, key = get_action_and_value(params, next_obs, key, envs.single_action_space.n)
|
| 376 |
+
inference_time += time.time() - inference_time_start
|
| 377 |
+
|
| 378 |
+
env_send_time_start = time.time()
|
| 379 |
+
envs.send(np.array(action), env_id)
|
| 380 |
+
env_send_time += time.time() - env_send_time_start
|
| 381 |
+
storage_time_start = time.time()
|
| 382 |
+
obs.append(next_obs)
|
| 383 |
+
dones.append(next_done)
|
| 384 |
+
values.append(value)
|
| 385 |
+
actions.append(action)
|
| 386 |
+
logprobs.append(logprob)
|
| 387 |
+
env_ids.append(env_id)
|
| 388 |
+
rewards.append(next_reward)
|
| 389 |
+
|
| 390 |
+
# info["TimeLimit.truncated"] has a bug https://github.com/sail-sg/envpool/issues/239
|
| 391 |
+
# so we use our own truncated flag
|
| 392 |
+
truncated = info["elapsed_step"] >= ATARI_MAX_FRAMES
|
| 393 |
+
truncations.append(truncated)
|
| 394 |
+
terminations.append(info["terminated"])
|
| 395 |
+
episode_returns[env_id] += info["reward"]
|
| 396 |
+
returned_episode_returns[env_id] = np.where(
|
| 397 |
+
info["terminated"] + truncated, episode_returns[env_id], returned_episode_returns[env_id]
|
| 398 |
+
)
|
| 399 |
+
episode_returns[env_id] *= (1 - info["terminated"]) * (1 - truncated)
|
| 400 |
+
episode_lengths[env_id] += 1
|
| 401 |
+
returned_episode_lengths[env_id] = np.where(
|
| 402 |
+
info["terminated"] + truncated, episode_lengths[env_id], returned_episode_lengths[env_id]
|
| 403 |
+
)
|
| 404 |
+
episode_lengths[env_id] *= (1 - info["terminated"]) * (1 - truncated)
|
| 405 |
+
storage_time += time.time() - storage_time_start
|
| 406 |
+
if args.profile:
|
| 407 |
+
action.block_until_ready()
|
| 408 |
+
rollout_time.append(time.time() - rollout_time_start)
|
| 409 |
+
writer.add_scalar("stats/rollout_time", np.mean(rollout_time), global_step)
|
| 410 |
+
|
| 411 |
+
avg_episodic_return = np.mean(returned_episode_returns)
|
| 412 |
+
writer.add_scalar("charts/avg_episodic_return", avg_episodic_return, global_step)
|
| 413 |
+
writer.add_scalar("charts/avg_episodic_length", np.mean(returned_episode_lengths), global_step)
|
| 414 |
+
if i == 0:
|
| 415 |
+
print(f"global_step={global_step}, avg_episodic_return={avg_episodic_return}")
|
| 416 |
+
print("SPS:", int(global_step / (time.time() - start_time)))
|
| 417 |
+
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
|
| 418 |
+
|
| 419 |
+
writer.add_scalar("stats/truncations", np.sum(truncations), global_step)
|
| 420 |
+
writer.add_scalar("stats/terminations", np.sum(terminations), global_step)
|
| 421 |
+
writer.add_scalar("stats/env_recv_time", env_recv_time, global_step)
|
| 422 |
+
writer.add_scalar("stats/inference_time", inference_time, global_step)
|
| 423 |
+
writer.add_scalar("stats/storage_time", storage_time, global_step)
|
| 424 |
+
writer.add_scalar("stats/env_send_time", env_send_time, global_step)
|
| 425 |
+
|
| 426 |
+
data_transfer_time_start = time.time()
|
| 427 |
+
b_obs, b_actions, b_logprobs, b_advantages, b_returns = prepare_data(
|
| 428 |
+
obs,
|
| 429 |
+
dones,
|
| 430 |
+
values,
|
| 431 |
+
actions,
|
| 432 |
+
logprobs,
|
| 433 |
+
env_ids,
|
| 434 |
+
rewards,
|
| 435 |
+
)
|
| 436 |
+
payload = (
|
| 437 |
+
global_step,
|
| 438 |
+
actor_policy_version,
|
| 439 |
+
update,
|
| 440 |
+
jnp.array_split(b_obs, len(learner_devices)),
|
| 441 |
+
jnp.array_split(b_actions, len(learner_devices)),
|
| 442 |
+
jnp.array_split(b_logprobs, len(learner_devices)),
|
| 443 |
+
jnp.array_split(b_advantages, len(learner_devices)),
|
| 444 |
+
jnp.array_split(b_returns, len(learner_devices)),
|
| 445 |
+
)
|
| 446 |
+
if args.profile:
|
| 447 |
+
payload[2][0].block_until_ready()
|
| 448 |
+
data_transfer_time.append(time.time() - data_transfer_time_start)
|
| 449 |
+
writer.add_scalar("stats/data_transfer_time", np.mean(data_transfer_time), global_step)
|
| 450 |
+
if update == 1 or not args.test_actor_learner_throughput:
|
| 451 |
+
rollout_queue_put_time_start = time.time()
|
| 452 |
+
rollout_queue.put(payload)
|
| 453 |
+
rollout_queue_put_time.append(time.time() - rollout_queue_put_time_start)
|
| 454 |
+
writer.add_scalar("stats/rollout_queue_put_time", np.mean(rollout_queue_put_time), global_step)
|
| 455 |
+
|
| 456 |
+
writer.add_scalar(
|
| 457 |
+
"charts/SPS_update",
|
| 458 |
+
int(
|
| 459 |
+
args.num_envs
|
| 460 |
+
* args.num_steps
|
| 461 |
+
* args.num_actor_threads
|
| 462 |
+
* len_actor_device_ids
|
| 463 |
+
/ (time.time() - update_time_start)
|
| 464 |
+
),
|
| 465 |
+
global_step,
|
| 466 |
+
)
|
| 467 |
+
|
| 468 |
+
|
| 469 |
+
@partial(jax.jit, static_argnums=(3))
|
| 470 |
+
def get_action_and_value2(
|
| 471 |
+
params: flax.core.FrozenDict,
|
| 472 |
+
x: np.ndarray,
|
| 473 |
+
action: np.ndarray,
|
| 474 |
+
action_dim: int,
|
| 475 |
+
):
|
| 476 |
+
hidden = Network().apply(params.network_params, x)
|
| 477 |
+
logits = Actor(action_dim).apply(params.actor_params, hidden)
|
| 478 |
+
logprob = jax.nn.log_softmax(logits)[jnp.arange(action.shape[0]), action]
|
| 479 |
+
logits = logits - jax.scipy.special.logsumexp(logits, axis=-1, keepdims=True)
|
| 480 |
+
logits = logits.clip(min=jnp.finfo(logits.dtype).min)
|
| 481 |
+
p_log_p = logits * jax.nn.softmax(logits)
|
| 482 |
+
entropy = -p_log_p.sum(-1)
|
| 483 |
+
value = Critic().apply(params.critic_params, hidden).squeeze()
|
| 484 |
+
return logprob, entropy, value
|
| 485 |
+
|
| 486 |
+
|
| 487 |
+
@jax.jit
|
| 488 |
+
def compute_gae(
|
| 489 |
+
env_ids: np.ndarray,
|
| 490 |
+
rewards: np.ndarray,
|
| 491 |
+
values: np.ndarray,
|
| 492 |
+
dones: np.ndarray,
|
| 493 |
+
):
|
| 494 |
+
dones = jnp.asarray(dones)
|
| 495 |
+
values = jnp.asarray(values)
|
| 496 |
+
env_ids = jnp.asarray(env_ids)
|
| 497 |
+
rewards = jnp.asarray(rewards)
|
| 498 |
+
|
| 499 |
+
_, B = env_ids.shape
|
| 500 |
+
final_env_id_checked = jnp.zeros(args.num_envs, jnp.int32) - 1
|
| 501 |
+
final_env_ids = jnp.zeros(B, jnp.int32)
|
| 502 |
+
advantages = jnp.zeros(B)
|
| 503 |
+
lastgaelam = jnp.zeros(args.num_envs)
|
| 504 |
+
lastdones = jnp.zeros(args.num_envs) + 1
|
| 505 |
+
lastvalues = jnp.zeros(args.num_envs)
|
| 506 |
+
|
| 507 |
+
def compute_gae_once(carry, x):
|
| 508 |
+
lastvalues, lastdones, advantages, lastgaelam, final_env_ids, final_env_id_checked = carry
|
| 509 |
+
(
|
| 510 |
+
done,
|
| 511 |
+
value,
|
| 512 |
+
eid,
|
| 513 |
+
reward,
|
| 514 |
+
) = x
|
| 515 |
+
nextnonterminal = 1.0 - lastdones[eid]
|
| 516 |
+
nextvalues = lastvalues[eid]
|
| 517 |
+
delta = jnp.where(final_env_id_checked[eid] == -1, 0, reward + args.gamma * nextvalues * nextnonterminal - value)
|
| 518 |
+
advantages = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam[eid]
|
| 519 |
+
final_env_ids = jnp.where(final_env_id_checked[eid] == 1, 1, 0)
|
| 520 |
+
final_env_id_checked = final_env_id_checked.at[eid].set(
|
| 521 |
+
jnp.where(final_env_id_checked[eid] == -1, 1, final_env_id_checked[eid])
|
| 522 |
+
)
|
| 523 |
+
|
| 524 |
+
# the last_ variables keeps track of the actual `num_steps`
|
| 525 |
+
lastgaelam = lastgaelam.at[eid].set(advantages)
|
| 526 |
+
lastdones = lastdones.at[eid].set(done)
|
| 527 |
+
lastvalues = lastvalues.at[eid].set(value)
|
| 528 |
+
return (lastvalues, lastdones, advantages, lastgaelam, final_env_ids, final_env_id_checked), (
|
| 529 |
+
advantages,
|
| 530 |
+
final_env_ids,
|
| 531 |
+
)
|
| 532 |
+
|
| 533 |
+
(_, _, _, _, final_env_ids, final_env_id_checked), (advantages, final_env_ids) = jax.lax.scan(
|
| 534 |
+
compute_gae_once,
|
| 535 |
+
(
|
| 536 |
+
lastvalues,
|
| 537 |
+
lastdones,
|
| 538 |
+
advantages,
|
| 539 |
+
lastgaelam,
|
| 540 |
+
final_env_ids,
|
| 541 |
+
final_env_id_checked,
|
| 542 |
+
),
|
| 543 |
+
(
|
| 544 |
+
dones,
|
| 545 |
+
values,
|
| 546 |
+
env_ids,
|
| 547 |
+
rewards,
|
| 548 |
+
),
|
| 549 |
+
reverse=True,
|
| 550 |
+
)
|
| 551 |
+
return advantages, advantages + values, final_env_id_checked, final_env_ids
|
| 552 |
+
|
| 553 |
+
|
| 554 |
+
def ppo_loss(params, x, a, logp, mb_advantages, mb_returns, action_dim):
|
| 555 |
+
newlogprob, entropy, newvalue = get_action_and_value2(params, x, a, action_dim)
|
| 556 |
+
logratio = newlogprob - logp
|
| 557 |
+
ratio = jnp.exp(logratio)
|
| 558 |
+
approx_kl = ((ratio - 1) - logratio).mean()
|
| 559 |
+
|
| 560 |
+
if args.norm_adv:
|
| 561 |
+
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)
|
| 562 |
+
|
| 563 |
+
# Policy loss
|
| 564 |
+
pg_loss1 = -mb_advantages * ratio
|
| 565 |
+
pg_loss2 = -mb_advantages * jnp.clip(ratio, 1 - args.clip_coef, 1 + args.clip_coef)
|
| 566 |
+
pg_loss = jnp.maximum(pg_loss1, pg_loss2).mean()
|
| 567 |
+
|
| 568 |
+
# Value loss
|
| 569 |
+
v_loss = 0.5 * ((newvalue - mb_returns) ** 2).mean()
|
| 570 |
+
|
| 571 |
+
entropy_loss = entropy.mean()
|
| 572 |
+
loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef
|
| 573 |
+
return loss, (pg_loss, v_loss, entropy_loss, jax.lax.stop_gradient(approx_kl))
|
| 574 |
+
|
| 575 |
+
|
| 576 |
+
@partial(jax.jit, static_argnums=(6))
|
| 577 |
+
def single_device_update(
|
| 578 |
+
agent_state: TrainState,
|
| 579 |
+
b_obs,
|
| 580 |
+
b_actions,
|
| 581 |
+
b_logprobs,
|
| 582 |
+
b_advantages,
|
| 583 |
+
b_returns,
|
| 584 |
+
action_dim,
|
| 585 |
+
key: jax.random.PRNGKey,
|
| 586 |
+
):
|
| 587 |
+
ppo_loss_grad_fn = jax.value_and_grad(ppo_loss, has_aux=True)
|
| 588 |
+
|
| 589 |
+
def update_epoch(carry, _):
|
| 590 |
+
agent_state, key = carry
|
| 591 |
+
key, subkey = jax.random.split(key)
|
| 592 |
+
|
| 593 |
+
# taken from: https://github.com/google/brax/blob/main/brax/training/agents/ppo/train.py
|
| 594 |
+
def convert_data(x: jnp.ndarray):
|
| 595 |
+
x = jax.random.permutation(subkey, x)
|
| 596 |
+
x = jnp.reshape(x, (args.num_minibatches, -1) + x.shape[1:])
|
| 597 |
+
return x
|
| 598 |
+
|
| 599 |
+
def update_minibatch(agent_state, minibatch):
|
| 600 |
+
mb_obs, mb_actions, mb_logprobs, mb_advantages, mb_returns = minibatch
|
| 601 |
+
(loss, (pg_loss, v_loss, entropy_loss, approx_kl)), grads = ppo_loss_grad_fn(
|
| 602 |
+
agent_state.params,
|
| 603 |
+
mb_obs,
|
| 604 |
+
mb_actions,
|
| 605 |
+
mb_logprobs,
|
| 606 |
+
mb_advantages,
|
| 607 |
+
mb_returns,
|
| 608 |
+
action_dim,
|
| 609 |
+
)
|
| 610 |
+
grads = jax.lax.pmean(grads, axis_name="devices")
|
| 611 |
+
agent_state = agent_state.apply_gradients(grads=grads)
|
| 612 |
+
return agent_state, (loss, pg_loss, v_loss, entropy_loss, approx_kl, grads)
|
| 613 |
+
|
| 614 |
+
agent_state, (loss, pg_loss, v_loss, entropy_loss, approx_kl, grads) = jax.lax.scan(
|
| 615 |
+
update_minibatch,
|
| 616 |
+
agent_state,
|
| 617 |
+
(
|
| 618 |
+
convert_data(b_obs),
|
| 619 |
+
convert_data(b_actions),
|
| 620 |
+
convert_data(b_logprobs),
|
| 621 |
+
convert_data(b_advantages),
|
| 622 |
+
convert_data(b_returns),
|
| 623 |
+
),
|
| 624 |
+
)
|
| 625 |
+
return (agent_state, key), (loss, pg_loss, v_loss, entropy_loss, approx_kl, grads)
|
| 626 |
+
|
| 627 |
+
(agent_state, key), (loss, pg_loss, v_loss, entropy_loss, approx_kl, _) = jax.lax.scan(
|
| 628 |
+
update_epoch, (agent_state, key), (), length=args.update_epochs
|
| 629 |
+
)
|
| 630 |
+
return agent_state, loss, pg_loss, v_loss, entropy_loss, approx_kl, key
|
| 631 |
+
|
| 632 |
+
|
| 633 |
+
if __name__ == "__main__":
|
| 634 |
+
devices = jax.devices("gpu")
|
| 635 |
+
args = parse_args()
|
| 636 |
+
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{uuid.uuid4()}"
|
| 637 |
+
if args.track:
|
| 638 |
+
import wandb
|
| 639 |
+
|
| 640 |
+
wandb.init(
|
| 641 |
+
project=args.wandb_project_name,
|
| 642 |
+
entity=args.wandb_entity,
|
| 643 |
+
sync_tensorboard=True,
|
| 644 |
+
config=vars(args),
|
| 645 |
+
name=run_name,
|
| 646 |
+
monitor_gym=True,
|
| 647 |
+
save_code=True,
|
| 648 |
+
)
|
| 649 |
+
print(devices)
|
| 650 |
+
writer = SummaryWriter(f"runs/{run_name}")
|
| 651 |
+
writer.add_text(
|
| 652 |
+
"hyperparameters",
|
| 653 |
+
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
|
| 654 |
+
)
|
| 655 |
+
|
| 656 |
+
# TRY NOT TO MODIFY: seeding
|
| 657 |
+
random.seed(args.seed)
|
| 658 |
+
np.random.seed(args.seed)
|
| 659 |
+
key = jax.random.PRNGKey(args.seed)
|
| 660 |
+
key, network_key, actor_key, critic_key = jax.random.split(key, 4)
|
| 661 |
+
|
| 662 |
+
# env setup
|
| 663 |
+
envs = make_env(args.env_id, args.seed, args.num_envs, args.async_batch_size)()
|
| 664 |
+
assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported"
|
| 665 |
+
|
| 666 |
+
def linear_schedule(count):
|
| 667 |
+
# anneal learning rate linearly after one training iteration which contains
|
| 668 |
+
# (args.num_minibatches * args.update_epochs) gradient updates
|
| 669 |
+
frac = 1.0 - (count // (args.num_minibatches * args.update_epochs)) / args.num_updates
|
| 670 |
+
return args.learning_rate * frac
|
| 671 |
+
|
| 672 |
+
network = Network()
|
| 673 |
+
actor = Actor(action_dim=envs.single_action_space.n)
|
| 674 |
+
critic = Critic()
|
| 675 |
+
network_params = network.init(network_key, np.array([envs.single_observation_space.sample()]))
|
| 676 |
+
agent_state = TrainState.create(
|
| 677 |
+
apply_fn=None,
|
| 678 |
+
params=AgentParams(
|
| 679 |
+
network_params,
|
| 680 |
+
actor.init(actor_key, network.apply(network_params, np.array([envs.single_observation_space.sample()]))),
|
| 681 |
+
critic.init(critic_key, network.apply(network_params, np.array([envs.single_observation_space.sample()]))),
|
| 682 |
+
),
|
| 683 |
+
tx=optax.chain(
|
| 684 |
+
optax.clip_by_global_norm(args.max_grad_norm),
|
| 685 |
+
optax.inject_hyperparams(optax.adam)(
|
| 686 |
+
learning_rate=linear_schedule if args.anneal_lr else args.learning_rate, eps=1e-5
|
| 687 |
+
),
|
| 688 |
+
),
|
| 689 |
+
)
|
| 690 |
+
learner_devices = [devices[d_id] for d_id in args.learner_device_ids]
|
| 691 |
+
actor_devices = [devices[d_id] for d_id in args.actor_device_ids]
|
| 692 |
+
agent_state = flax.jax_utils.replicate(agent_state, devices=learner_devices)
|
| 693 |
+
|
| 694 |
+
multi_device_update = jax.pmap(
|
| 695 |
+
single_device_update,
|
| 696 |
+
axis_name="devices",
|
| 697 |
+
devices=learner_devices,
|
| 698 |
+
in_axes=(0, 0, 0, 0, 0, 0, None, None),
|
| 699 |
+
out_axes=(0, 0, 0, 0, 0, 0, None),
|
| 700 |
+
static_broadcasted_argnums=(6),
|
| 701 |
+
)
|
| 702 |
+
|
| 703 |
+
rollout_queue = queue.Queue(maxsize=1)
|
| 704 |
+
params_queues = []
|
| 705 |
+
num_cpus = mp.cpu_count()
|
| 706 |
+
fair_num_cpus = num_cpus // len(args.actor_device_ids)
|
| 707 |
+
|
| 708 |
+
class DummyWriter:
|
| 709 |
+
def add_scalar(self, arg0, arg1, arg3):
|
| 710 |
+
pass
|
| 711 |
+
|
| 712 |
+
dummy_writer = DummyWriter()
|
| 713 |
+
for d_idx, d_id in enumerate(args.actor_device_ids):
|
| 714 |
+
for j in range(args.num_actor_threads):
|
| 715 |
+
params_queue = queue.Queue(maxsize=1)
|
| 716 |
+
params_queue.put(jax.device_put(flax.jax_utils.unreplicate(agent_state.params), devices[d_id]))
|
| 717 |
+
threading.Thread(
|
| 718 |
+
target=rollout,
|
| 719 |
+
args=(
|
| 720 |
+
j,
|
| 721 |
+
fair_num_cpus if args.num_actor_threads > 1 else None,
|
| 722 |
+
j * args.num_actor_threads if args.num_actor_threads > 1 else -1,
|
| 723 |
+
jax.device_put(key, devices[d_id]),
|
| 724 |
+
args,
|
| 725 |
+
rollout_queue,
|
| 726 |
+
params_queue,
|
| 727 |
+
writer if d_idx == 0 and j == 0 else dummy_writer,
|
| 728 |
+
learner_devices,
|
| 729 |
+
),
|
| 730 |
+
).start()
|
| 731 |
+
params_queues.append(params_queue)
|
| 732 |
+
|
| 733 |
+
rollout_queue_get_time = deque(maxlen=10)
|
| 734 |
+
learner_policy_version = 0
|
| 735 |
+
while True:
|
| 736 |
+
learner_policy_version += 1
|
| 737 |
+
if learner_policy_version == 1 or not args.test_actor_learner_throughput:
|
| 738 |
+
rollout_queue_get_time_start = time.time()
|
| 739 |
+
(
|
| 740 |
+
global_step,
|
| 741 |
+
actor_policy_version,
|
| 742 |
+
update,
|
| 743 |
+
b_obs,
|
| 744 |
+
b_actions,
|
| 745 |
+
b_logprobs,
|
| 746 |
+
b_advantages,
|
| 747 |
+
b_returns,
|
| 748 |
+
) = rollout_queue.get()
|
| 749 |
+
rollout_queue_get_time.append(time.time() - rollout_queue_get_time_start)
|
| 750 |
+
writer.add_scalar("stats/rollout_queue_get_time", np.mean(rollout_queue_get_time), global_step)
|
| 751 |
+
|
| 752 |
+
training_time_start = time.time()
|
| 753 |
+
(agent_state, loss, pg_loss, v_loss, entropy_loss, approx_kl, key) = multi_device_update(
|
| 754 |
+
agent_state,
|
| 755 |
+
jax.device_put_sharded(b_obs, learner_devices),
|
| 756 |
+
jax.device_put_sharded(b_actions, learner_devices),
|
| 757 |
+
jax.device_put_sharded(b_logprobs, learner_devices),
|
| 758 |
+
jax.device_put_sharded(b_advantages, learner_devices),
|
| 759 |
+
jax.device_put_sharded(b_returns, learner_devices),
|
| 760 |
+
envs.single_action_space.n,
|
| 761 |
+
key,
|
| 762 |
+
)
|
| 763 |
+
if learner_policy_version == 1 or not args.test_actor_learner_throughput:
|
| 764 |
+
for d_idx, d_id in enumerate(args.actor_device_ids):
|
| 765 |
+
for j in range(args.num_actor_threads):
|
| 766 |
+
params_queues[d_idx * args.num_actor_threads + j].put(
|
| 767 |
+
jax.device_put(flax.jax_utils.unreplicate(agent_state.params), devices[d_id])
|
| 768 |
+
)
|
| 769 |
+
if args.profile:
|
| 770 |
+
v_loss[-1, -1, -1].block_until_ready()
|
| 771 |
+
writer.add_scalar("stats/training_time", time.time() - training_time_start, global_step)
|
| 772 |
+
writer.add_scalar("stats/rollout_queue_size", rollout_queue.qsize(), global_step)
|
| 773 |
+
writer.add_scalar("stats/params_queue_size", params_queue.qsize(), global_step)
|
| 774 |
+
print(
|
| 775 |
+
global_step,
|
| 776 |
+
f"actor_policy_version={actor_policy_version}, actor_update={update}, learner_policy_version={learner_policy_version}, training time: {time.time() - training_time_start}s",
|
| 777 |
+
)
|
| 778 |
+
|
| 779 |
+
# TRY NOT TO MODIFY: record rewards for plotting purposes
|
| 780 |
+
writer.add_scalar("charts/learning_rate", agent_state.opt_state[1].hyperparams["learning_rate"][0].item(), global_step)
|
| 781 |
+
writer.add_scalar("losses/value_loss", v_loss[-1, -1, -1].item(), global_step)
|
| 782 |
+
writer.add_scalar("losses/policy_loss", pg_loss[-1, -1, -1].item(), global_step)
|
| 783 |
+
writer.add_scalar("losses/entropy", entropy_loss[-1, -1, -1].item(), global_step)
|
| 784 |
+
writer.add_scalar("losses/approx_kl", approx_kl[-1, -1, -1].item(), global_step)
|
| 785 |
+
writer.add_scalar("losses/loss", loss[-1, -1, -1].item(), global_step)
|
| 786 |
+
if update >= args.num_updates:
|
| 787 |
+
break
|
| 788 |
+
|
| 789 |
+
if args.save_model:
|
| 790 |
+
agent_state = flax.jax_utils.unreplicate(agent_state)
|
| 791 |
+
model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
|
| 792 |
+
with open(model_path, "wb") as f:
|
| 793 |
+
f.write(
|
| 794 |
+
flax.serialization.to_bytes(
|
| 795 |
+
[
|
| 796 |
+
vars(args),
|
| 797 |
+
[
|
| 798 |
+
agent_state.params.network_params,
|
| 799 |
+
agent_state.params.actor_params,
|
| 800 |
+
agent_state.params.critic_params,
|
| 801 |
+
],
|
| 802 |
+
]
|
| 803 |
+
)
|
| 804 |
+
)
|
| 805 |
+
print(f"model saved to {model_path}")
|
| 806 |
+
from cleanrl_utils.evals.ppo_envpool_jax_eval import evaluate
|
| 807 |
+
|
| 808 |
+
episodic_returns = evaluate(
|
| 809 |
+
model_path,
|
| 810 |
+
make_env,
|
| 811 |
+
args.env_id,
|
| 812 |
+
eval_episodes=10,
|
| 813 |
+
run_name=f"{run_name}-eval",
|
| 814 |
+
Model=(Network, Actor, Critic),
|
| 815 |
+
)
|
| 816 |
+
for idx, episodic_return in enumerate(episodic_returns):
|
| 817 |
+
writer.add_scalar("eval/episodic_return", episodic_return, idx)
|
| 818 |
+
|
| 819 |
+
if args.upload_model:
|
| 820 |
+
from cleanrl_utils.huggingface import push_to_hub
|
| 821 |
+
|
| 822 |
+
repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
|
| 823 |
+
repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
|
| 824 |
+
push_to_hub(
|
| 825 |
+
args,
|
| 826 |
+
episodic_returns,
|
| 827 |
+
repo_id,
|
| 828 |
+
"PPO",
|
| 829 |
+
f"runs/{run_name}",
|
| 830 |
+
f"videos/{run_name}-eval",
|
| 831 |
+
extra_dependencies=["jax", "envpool", "atari"],
|
| 832 |
+
)
|
| 833 |
+
|
| 834 |
+
envs.close()
|
| 835 |
+
writer.close()
|
videos/Krull-v5__sebulba_ppo_envpool_impala_atari_wrapper__1__d3265ef6-fd44-4f39-b7d2-fab7dad655a4-eval/0.mp4
DELETED
|
Binary file (444 kB)
|
|
|
videos/Krull-v5__sebulba_ppo_envpool_impala_atari_wrapper__1__d9dbfee2-82e0-42f5-a745-e43d95f82116-eval/0.mp4
ADDED
|
Binary file (469 kB). View file
|
|
|