|
|
|
import argparse |
|
import os |
|
import random |
|
import time |
|
from distutils.util import strtobool |
|
|
|
import gym |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
from stable_baselines3.common.atari_wrappers import ( |
|
ClipRewardEnv, |
|
EpisodicLifeEnv, |
|
FireResetEnv, |
|
MaxAndSkipEnv, |
|
NoopResetEnv, |
|
) |
|
from stable_baselines3.common.buffers import ReplayBuffer |
|
from torch.utils.tensorboard import SummaryWriter |
|
|
|
|
|
def parse_args(): |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"), |
|
help="the name of this experiment") |
|
parser.add_argument("--seed", type=int, default=1, |
|
help="seed of the experiment") |
|
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, |
|
help="if toggled, `torch.backends.cudnn.deterministic=False`") |
|
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, |
|
help="if toggled, cuda will be enabled by default") |
|
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, |
|
help="if toggled, this experiment will be tracked with Weights and Biases") |
|
parser.add_argument("--wandb-project-name", type=str, default="cleanRL", |
|
help="the wandb's project name") |
|
parser.add_argument("--wandb-entity", type=str, default=None, |
|
help="the entity (team) of wandb's project") |
|
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, |
|
help="whether to capture videos of the agent performances (check out `videos` folder)") |
|
parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, |
|
help="whether to save model into the `runs/{run_name}` folder") |
|
parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, |
|
help="whether to upload the saved model to huggingface") |
|
parser.add_argument("--hf-entity", type=str, default="", |
|
help="the user or org name of the model repository from the Hugging Face Hub") |
|
|
|
|
|
parser.add_argument("--env-id", type=str, default="BreakoutNoFrameskip-v4", |
|
help="the id of the environment") |
|
parser.add_argument("--total-timesteps", type=int, default=10000000, |
|
help="total timesteps of the experiments") |
|
parser.add_argument("--learning-rate", type=float, default=2.5e-4, |
|
help="the learning rate of the optimizer") |
|
parser.add_argument("--n-atoms", type=int, default=51, |
|
help="the number of atoms") |
|
parser.add_argument("--v-min", type=float, default=-10, |
|
help="the number of atoms") |
|
parser.add_argument("--v-max", type=float, default=10, |
|
help="the number of atoms") |
|
parser.add_argument("--buffer-size", type=int, default=1000000, |
|
help="the replay memory buffer size") |
|
parser.add_argument("--gamma", type=float, default=0.99, |
|
help="the discount factor gamma") |
|
parser.add_argument("--target-network-frequency", type=int, default=10000, |
|
help="the timesteps it takes to update the target network") |
|
parser.add_argument("--batch-size", type=int, default=32, |
|
help="the batch size of sample from the reply memory") |
|
parser.add_argument("--start-e", type=float, default=1, |
|
help="the starting epsilon for exploration") |
|
parser.add_argument("--end-e", type=float, default=0.01, |
|
help="the ending epsilon for exploration") |
|
parser.add_argument("--exploration-fraction", type=float, default=0.1, |
|
help="the fraction of `total-timesteps` it takes from start-e to go end-e") |
|
parser.add_argument("--learning-starts", type=int, default=80000, |
|
help="timestep to start learning") |
|
parser.add_argument("--train-frequency", type=int, default=4, |
|
help="the frequency of training") |
|
args = parser.parse_args() |
|
|
|
return args |
|
|
|
|
|
def make_env(env_id, seed, idx, capture_video, run_name): |
|
def thunk(): |
|
env = gym.make(env_id) |
|
env = gym.wrappers.RecordEpisodeStatistics(env) |
|
if capture_video: |
|
if idx == 0: |
|
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}") |
|
env = NoopResetEnv(env, noop_max=30) |
|
env = MaxAndSkipEnv(env, skip=4) |
|
env = EpisodicLifeEnv(env) |
|
if "FIRE" in env.unwrapped.get_action_meanings(): |
|
env = FireResetEnv(env) |
|
env = ClipRewardEnv(env) |
|
env = gym.wrappers.ResizeObservation(env, (84, 84)) |
|
env = gym.wrappers.GrayScaleObservation(env) |
|
env = gym.wrappers.FrameStack(env, 4) |
|
env.seed(seed) |
|
env.action_space.seed(seed) |
|
env.observation_space.seed(seed) |
|
return env |
|
|
|
return thunk |
|
|
|
|
|
|
|
class QNetwork(nn.Module): |
|
def __init__(self, env, n_atoms=101, v_min=-100, v_max=100): |
|
super().__init__() |
|
self.env = env |
|
self.n_atoms = n_atoms |
|
self.register_buffer("atoms", torch.linspace(v_min, v_max, steps=n_atoms)) |
|
self.n = env.single_action_space.n |
|
self.network = nn.Sequential( |
|
nn.Conv2d(4, 32, 8, stride=4), |
|
nn.ReLU(), |
|
nn.Conv2d(32, 64, 4, stride=2), |
|
nn.ReLU(), |
|
nn.Conv2d(64, 64, 3, stride=1), |
|
nn.ReLU(), |
|
nn.Flatten(), |
|
nn.Linear(3136, 512), |
|
nn.ReLU(), |
|
nn.Linear(512, self.n * n_atoms), |
|
) |
|
|
|
def get_action(self, x, action=None): |
|
logits = self.network(x / 255.0) |
|
|
|
pmfs = torch.softmax(logits.view(len(x), self.n, self.n_atoms), dim=2) |
|
q_values = (pmfs * self.atoms).sum(2) |
|
if action is None: |
|
action = torch.argmax(q_values, 1) |
|
return action, pmfs[torch.arange(len(x)), action] |
|
|
|
|
|
def linear_schedule(start_e: float, end_e: float, duration: int, t: int): |
|
slope = (end_e - start_e) / duration |
|
return max(slope * t + start_e, end_e) |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
|
|
run_name = "PongNoFrameskip-v4__c51_atari__1__1672771568" |
|
if args.track: |
|
import wandb |
|
|
|
wandb.init( |
|
project=args.wandb_project_name, |
|
entity=args.wandb_entity, |
|
sync_tensorboard=True, |
|
config=vars(args), |
|
name=run_name, |
|
monitor_gym=True, |
|
save_code=True, |
|
) |
|
writer = SummaryWriter(f"runs/{run_name}") |
|
writer.add_text( |
|
"hyperparameters", |
|
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])), |
|
) |
|
|
|
|
|
random.seed(args.seed) |
|
np.random.seed(args.seed) |
|
torch.manual_seed(args.seed) |
|
torch.backends.cudnn.deterministic = args.torch_deterministic |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu") |
|
|
|
|
|
envs = gym.vector.SyncVectorEnv([make_env(args.env_id, args.seed, 0, args.capture_video, run_name)]) |
|
assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported" |
|
|
|
q_network = QNetwork(envs, n_atoms=args.n_atoms, v_min=args.v_min, v_max=args.v_max).to(device) |
|
optimizer = optim.Adam(q_network.parameters(), lr=args.learning_rate, eps=0.01 / args.batch_size) |
|
target_network = QNetwork(envs, n_atoms=args.n_atoms, v_min=args.v_min, v_max=args.v_max).to(device) |
|
target_network.load_state_dict(q_network.state_dict()) |
|
|
|
rb = ReplayBuffer( |
|
args.buffer_size, |
|
envs.single_observation_space, |
|
envs.single_action_space, |
|
device, |
|
optimize_memory_usage=True, |
|
handle_timeout_termination=True, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if args.save_model: |
|
model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model" |
|
|
|
|
|
|
|
|
|
|
|
print(f"model saved to {model_path}") |
|
from cleanrl_utils.evals.c51_eval import evaluate |
|
|
|
episodic_returns = evaluate( |
|
model_path, |
|
make_env, |
|
args.env_id, |
|
eval_episodes=10, |
|
run_name=f"{run_name}-eval", |
|
Model=QNetwork, |
|
device=device, |
|
epsilon=0.05, |
|
) |
|
for idx, episodic_return in enumerate(episodic_returns): |
|
writer.add_scalar("eval/episodic_return", episodic_return, idx) |
|
|
|
if args.upload_model: |
|
from cleanrl_utils.huggingface import push_to_hub |
|
|
|
repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}" |
|
repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name |
|
push_to_hub(args, episodic_returns, repo_id, "C51", f"runs/{run_name}", f"videos/{run_name}-eval") |
|
|
|
envs.close() |
|
writer.close() |
|
|