File size: 12,006 Bytes
bf620c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
# lrmc_bilevel.py
# Top-1 LRMC ablation: one-cluster pooling vs. plain GCN on Planetoid (e.g., Cora)
# Requires: torch, torch_geometric, torch_scatter, torch_sparse
#
# Usage examples:
# python lrmc_bilevel.py --dataset Cora --seeds /path/to/lrmc_seeds.json --variant baseline
# python lrmc_bilevel.py --dataset Cora --seeds /path/to/lrmc_seeds.json --variant pool
#
# Notes:
# - We read your LRMC JSON, pick the single cluster with the highest 'score',
# assign it to cluster id 0, and make all other nodes singletons (1..K-1).
# - For --variant pool: Node-GCN -> pool (means) -> Cluster-GCN -> broadcast + skip -> Node-GCN -> classifier
# - For --variant baseline: Standard 2-layer GCN.
# - Keep flags like --self_loop_scale and --use_a2 if you want A+位I / A^2 augmentation.
import argparse, json
from pathlib import Path
from typing import List, Tuple, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch_scatter import scatter_add, scatter_mean
from torch_sparse import coalesce, spspmm
from torch_geometric.datasets import Planetoid
from torch_geometric.nn import GCNConv
# ---------------------------
# Utilities: edges and seeds
# ---------------------------
def add_scaled_self_loops(edge_index: Tensor,
edge_weight: Optional[Tensor],
num_nodes: int,
scale: float = 1.0) -> Tuple[Tensor, Tensor]:
"""Add self-loops with chosen weight (scale). If scale=0, return unchanged (and create weights if None)."""
if scale == 0.0:
if edge_weight is None:
edge_weight = torch.ones(edge_index.size(1), device=edge_index.device)
return edge_index, edge_weight
device = edge_index.device
self_loops = torch.arange(num_nodes, device=device)
self_index = torch.stack([self_loops, self_loops], dim=0)
self_weight = torch.full((num_nodes,), float(scale), device=device)
base_w = edge_weight if edge_weight is not None else torch.ones(edge_index.size(1), device=device)
ei = torch.cat([edge_index, self_index], dim=1)
ew = torch.cat([base_w, self_weight], dim=0)
ei, ew = coalesce(ei, ew, num_nodes, num_nodes, op='add')
return ei, ew
def adjacency_power(edge_index: Tensor, num_nodes: int, k: int = 2) -> Tensor:
"""
Compute (binary) k-th power adjacency using sparse matmul (torch_sparse.spspmm).
Here we use k=2. Returns coalesced edge_index without weights.
"""
row, col = edge_index
val = torch.ones(row.numel(), device=edge_index.device)
Ai, Av = edge_index, val
# A^2
Ri, Rv = spspmm(Ai, Av, Ai, Av, num_nodes, num_nodes, num_nodes)
mask = Ri[0] != Ri[1] # drop diagonal; add custom self-loops later if desired
Ri = Ri[:, mask]
Ri, _ = coalesce(Ri, torch.ones(Ri.size(1), device=edge_index.device), num_nodes, num_nodes, op='add')
return Ri
def build_cluster_graph(edge_index: Tensor,
num_nodes: int,
node2cluster: Tensor,
weight_per_edge: Optional[Tensor] = None,
num_clusters: Optional[int] = None
) -> Tuple[Tensor, Tensor, int]:
"""
Build cluster graph A_c = S^T A S with summed multiplicities as weights.
node2cluster: [N] long tensor mapping each node -> cluster id.
"""
K = int(node2cluster.max().item()) + 1 if num_clusters is None else num_clusters
src, dst = edge_index
csrc = node2cluster[src]
cdst = node2cluster[dst]
edge_c = torch.stack([csrc, cdst], dim=0)
w = weight_per_edge if weight_per_edge is not None else torch.ones(edge_c.size(1), device=edge_c.device)
edge_c, w = coalesce(edge_c, w, K, K, op='add') # sum multiplicities
return edge_c, w, K
# -----
# Seeds
# -----
def _pick_top1_cluster(obj: dict) -> List[int]:
"""
From LRMC JSON with structure: {"clusters":[{"members":[...], "score":float, ...}, ...]}
choose the cluster with max (score, size) and return its members.
"""
clusters = obj.get("clusters", [])
if not clusters:
return []
# choose by highest score, then by size (tiebreaker)
best = max(clusters, key=lambda c: (float(c.get("score", 0.0)), len(c.get("members", []))))
return list(best.get("members", []))
def load_top1_assignment(seeds_json: str, n_nodes: int) -> Tuple[Tensor, Tensor]:
"""
Create a hard assignment for top-1 LRMC cluster:
- cluster 0 = top-1 LRMC set
- nodes outside are singletons (1..K-1)
Returns:
node2cluster: [N] long
cluster_scores: [K,1] with 1.0 for top cluster, 0.0 for singletons
"""
obj = json.loads(Path(seeds_json).read_text())
C_star = _pick_top1_cluster(obj)
C_star = torch.tensor(sorted(set(C_star)), dtype=torch.long)
node2cluster = torch.full((n_nodes,), -1, dtype=torch.long)
node2cluster[C_star] = 0
outside = torch.tensor(sorted(set(range(n_nodes)) - set(C_star.tolist())), dtype=torch.long)
if outside.numel() > 0:
node2cluster[outside] = torch.arange(1, 1 + outside.numel(), dtype=torch.long)
assert int(node2cluster.min()) >= 0, "All nodes must be assigned."
K = 1 + outside.numel()
cluster_scores = torch.zeros(K, 1, dtype=torch.float32)
if C_star.numel() > 0:
cluster_scores[0, 0] = 1.0 # emphasize the supercluster
return node2cluster, cluster_scores
# --------------------------
# Models (baseline + pooled)
# --------------------------
class GCN2(nn.Module):
"""Plain 2-layer GCN baseline."""
def __init__(self, in_dim, hid, out_dim):
super().__init__()
self.conv1 = GCNConv(in_dim, hid)
self.conv2 = GCNConv(hid, out_dim)
def forward(self, x, edge_index):
x = F.relu(self.conv1(x, edge_index))
x = F.dropout(x, p=0.5, training=self.training)
x = self.conv2(x, edge_index)
return x
class OneClusterPool(nn.Module):
"""
Node-GCN -> pool to one-cluster + singletons -> Cluster-GCN -> broadcast + skip -> Node-GCN -> classifier
"""
def __init__(self,
in_dim: int,
hid: int,
out_dim: int,
node2cluster: Tensor,
edge_index_node: Tensor,
num_nodes: int,
self_loop_scale: float = 0.0,
use_a2_for_clusters: bool = False):
super().__init__()
self.n2c = node2cluster.long()
self.K = int(self.n2c.max().item()) + 1
# Node graph (A + 位I if desired)
ei_node = edge_index_node
ei_node, ew_node = add_scaled_self_loops(ei_node, None, num_nodes, scale=self_loop_scale)
self.register_buffer("edge_index_node", ei_node)
self.register_buffer("edge_weight_node", ew_node)
# Cluster graph from A or A^2
ei_for_c = adjacency_power(edge_index_node, num_nodes, k=2) if use_a2_for_clusters else edge_index_node
edge_index_c, edge_weight_c, K = build_cluster_graph(ei_for_c, num_nodes, self.n2c)
self.register_buffer("edge_index_c", edge_index_c)
self.register_buffer("edge_weight_c", edge_weight_c)
self.K = K
# Layers
self.gcn_node1 = GCNConv(in_dim, hid, add_self_loops=False, normalize=True)
self.gcn_cluster = GCNConv(hid, hid, add_self_loops=True, normalize=True)
self.gcn_node2 = GCNConv(hid * 2, out_dim) # on concatenated [h_node, h_broadcast]
def forward(self, x: Tensor, edge_index_node: Tensor) -> Tensor:
# Node GCN (uses stored weights)
h1 = F.relu(self.gcn_node1(x, self.edge_index_node, self.edge_weight_node))
# Pool to clusters: mean per cluster
z = scatter_mean(h1, self.n2c, dim=0, dim_size=self.K) # [K, H]
# Cluster GCN
z2 = F.relu(self.gcn_cluster(z, self.edge_index_c, self.edge_weight_c))
# Broadcast back + skip concat
hb = z2[self.n2c] # [N, H]
hcat = torch.cat([h1, hb], dim=1) # [N, 2H]
# Final node GCN head -> logits
out = self.gcn_node2(hcat, edge_index_node)
return out
# -------------
# Training glue
# -------------
@torch.no_grad()
def accuracy(logits: Tensor, y: Tensor, mask: Tensor) -> float:
pred = logits[mask].argmax(dim=1)
return (pred == y[mask]).float().mean().item()
def run_train_eval(model: nn.Module, data, epochs=200, lr=0.01, wd=5e-4):
opt = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=wd)
best_val, best_state = 0.0, None
for ep in range(1, epochs + 1):
model.train()
opt.zero_grad(set_to_none=True)
logits = model(data.x, data.edge_index)
loss = F.cross_entropy(logits[data.train_mask], data.y[data.train_mask])
loss.backward(); opt.step()
# track best on val
model.eval()
logits = model(data.x, data.edge_index)
val_acc = accuracy(logits, data.y, data.val_mask)
if val_acc > best_val:
best_val, best_state = val_acc, {k: v.detach().clone() for k, v in model.state_dict().items()}
if ep % 20 == 0:
tr = accuracy(logits, data.y, data.train_mask)
te = accuracy(logits, data.y, data.test_mask)
print(f"[{ep:04d}] loss={loss.item():.4f} train={tr:.3f} val={val_acc:.3f} test={te:.3f}")
# test @ best val
if best_state is not None:
model.load_state_dict(best_state)
model.eval()
logits = model(data.x, data.edge_index)
return {
"val": accuracy(logits, data.y, data.val_mask),
"test": accuracy(logits, data.y, data.test_mask)
}
# -----------
# Entrypoint
# -----------
def main():
ap = argparse.ArgumentParser()
ap.add_argument("--dataset", required=True, choices=["Cora", "Citeseer", "Pubmed"])
ap.add_argument("--seeds", required=True, help="Path to LRMC seeds JSON (single large graph).")
ap.add_argument("--variant", choices=["baseline", "pool"], default="pool",
help="baseline=plain GCN; pool=top-1 LRMC one-cluster pooling")
ap.add_argument("--hidden", type=int, default=128)
ap.add_argument("--epochs", type=int, default=200)
ap.add_argument("--lr", type=float, default=0.01)
ap.add_argument("--wd", type=float, default=5e-4)
ap.add_argument("--dropout", type=float, default=0.5) # used in baseline only
ap.add_argument("--self_loop_scale", type=float, default=0.0, help="位 for A+位I on node graph (0 disables)")
ap.add_argument("--use_a2", action="store_true", help="Use A^2 to build the cluster graph (recommended for pool)")
ap.add_argument("--seed", type=int, default=42)
args = ap.parse_args()
torch.manual_seed(args.seed)
# Load dataset
ds = Planetoid(root=f"./data/{args.dataset}", name=args.dataset)
data = ds[0]
in_dim, out_dim, n = ds.num_node_features, ds.num_classes, data.num_nodes
if args.variant == "baseline":
model = GCN2(in_dim, args.hidden, out_dim)
# use default add_self_loops=True behavior inside convs
res = run_train_eval(model, data, epochs=args.epochs, lr=args.lr, wd=args.wd)
print(f"Baseline GCN: val={res['val']:.4f} test={res['test']:.4f}")
return
# Top-1 LRMC assignment
node2cluster, _ = load_top1_assignment(args.seeds, n)
# One-cluster pooled model
model = OneClusterPool(in_dim=in_dim,
hid=args.hidden,
out_dim=out_dim,
node2cluster=node2cluster,
edge_index_node=data.edge_index,
num_nodes=n,
self_loop_scale=args.self_loop_scale,
use_a2_for_clusters=args.use_a2)
res = run_train_eval(model, data, epochs=args.epochs, lr=args.lr, wd=args.wd)
print(f"L-RMC (top-1 pool): val={res['val']:.4f} test={res['test']:.4f}")
if __name__ == "__main__":
main()
|