File size: 12,669 Bytes
bf620c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
# 2.1_lrmc_bilevel.py
# Top-1 LRMC ablation with debug guards so seeds differences are visible.
# Requires: torch, torch_geometric, torch_scatter, torch_sparse
import argparse, json, hashlib
from pathlib import Path
from typing import List, Tuple, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch_scatter import scatter_mean
from torch_sparse import coalesce, spspmm
from torch_geometric.datasets import Planetoid
from torch_geometric.nn import GCNConv
# ---------------------------
# Utilities: edges and seeds
# ---------------------------
def add_scaled_self_loops(edge_index: Tensor,
edge_weight: Optional[Tensor],
num_nodes: int,
scale: float = 1.0) -> Tuple[Tensor, Tensor]:
if scale == 0.0:
if edge_weight is None:
edge_weight = torch.ones(edge_index.size(1), device=edge_index.device)
return edge_index, edge_weight
device = edge_index.device
self_loops = torch.arange(num_nodes, device=device)
self_index = torch.stack([self_loops, self_loops], dim=0)
self_weight = torch.full((num_nodes,), float(scale), device=device)
base_w = edge_weight if edge_weight is not None else torch.ones(edge_index.size(1), device=device)
ei = torch.cat([edge_index, self_index], dim=1)
ew = torch.cat([base_w, self_weight], dim=0)
ei, ew = coalesce(ei, ew, num_nodes, num_nodes, op='add')
return ei, ew
def adjacency_power(edge_index: Tensor, num_nodes: int, k: int = 2) -> Tensor:
# A^2 using spspmm; return binary, coalesced, no self loops
row, col = edge_index
val = torch.ones(row.numel(), device=edge_index.device)
Ai, Av = edge_index, val
Ri, _ = spspmm(Ai, Av, Ai, Av, num_nodes, num_nodes, num_nodes)
mask = Ri[0] != Ri[1]
Ri = Ri[:, mask]
Ri, _ = coalesce(Ri, torch.ones(Ri.size(1), device=edge_index.device), num_nodes, num_nodes, op='add')
return Ri
def build_cluster_graph(edge_index: Tensor,
num_nodes: int,
node2cluster: Tensor,
weight_per_edge: Optional[Tensor] = None,
num_clusters: Optional[int] = None
) -> Tuple[Tensor, Tensor, int]:
K = int(node2cluster.max().item()) + 1 if num_clusters is None else num_clusters
src, dst = edge_index
csrc = node2cluster[src]
cdst = node2cluster[dst]
edge_c = torch.stack([csrc, cdst], dim=0)
w = weight_per_edge if weight_per_edge is not None else torch.ones(edge_c.size(1), device=edge_c.device)
edge_c, w = coalesce(edge_c, w, K, K, op='add')
return edge_c, w, K
# -----
# Seeds
# -----
def _md5(path: Path) -> str:
h = hashlib.md5()
with path.open('rb') as f:
for chunk in iter(lambda: f.read(8192), b''):
h.update(chunk)
return h.hexdigest()
def _extract_members(cluster_obj: dict) -> List[int]:
"""
Try 'members' first, then 'seed_nodes'. Raise if neither works.
"""
m = cluster_obj.get("members", None)
if isinstance(m, list) and len(m) > 0:
return list(dict.fromkeys(int(x) for x in m)) # dedupe/preserve order
m2 = cluster_obj.get("seed_nodes", None)
if isinstance(m2, list) and len(m2) > 0:
return list(dict.fromkeys(int(x) for x in m2))
# If both present but empty, return empty; caller will handle.
if isinstance(m, list) or isinstance(m2, list):
return []
raise KeyError("Cluster object has neither 'members' nor 'seed_nodes'.")
def _pick_top1_cluster(obj: dict) -> List[int]:
"""
From {"clusters":[{..., "score":float, "members" or "seed_nodes"}, ...]},
choose max by (score, size). Returns deduped member list.
"""
clusters = obj.get("clusters", [])
if not isinstance(clusters, list) or len(clusters) == 0:
return []
def keyfun(c):
score = float(c.get("score", 0.0))
try:
mem = _extract_members(c)
except KeyError:
mem = []
return (score, len(mem))
best = max(clusters, key=keyfun)
try:
members = _extract_members(best)
except KeyError:
members = []
return sorted(set(int(x) for x in members))
def load_top1_assignment(seeds_json: str, n_nodes: int, debug: bool = False) -> Tuple[Tensor, Tensor, dict]:
"""
Hard assignment for top-1 LRMC cluster:
cluster 0 = top cluster; others are singletons.
Returns node2cluster[N], cluster_scores[K,1], and a small debug dict.
"""
p = Path(seeds_json)
text = p.read_text(encoding='utf-8')
obj = json.loads(text)
C_star = _pick_top1_cluster(obj)
# if len(C_star) > 0 and max(C_star) == n_nodes:
# Looks 1-indexed (since max == N, not N-1) → shift down by 1
C_star = [u - 1 for u in C_star]
C_star = torch.tensor(C_star, dtype=torch.long)
# C_star = _pick_top1_cluster(obj)
# C_star = torch.tensor(C_star, dtype=torch.long)
node2cluster = torch.full((n_nodes,), -1, dtype=torch.long)
if C_star.numel() == 0:
# FAIL LOUDLY instead of silently falling back to identity
raise RuntimeError(
f"No members found for top-1 cluster in {seeds_json}. "
f"Expected 'members' or 'seed_nodes' to be non-empty."
)
node2cluster[C_star] = 0
outside = torch.tensor(sorted(set(range(n_nodes)) - set(C_star.tolist())), dtype=torch.long)
if outside.numel() > 0:
node2cluster[outside] = torch.arange(1, 1 + outside.numel(), dtype=torch.long)
assert int(node2cluster.min()) >= 0
K = 1 + outside.numel()
cluster_scores = torch.zeros(K, 1, dtype=torch.float32)
cluster_scores[0, 0] = 1.0
info = {
"json_md5": _md5(p),
"top_cluster_size": int(C_star.numel()),
"K": int(K),
"n_outside": int(outside.numel()),
"first_members": [int(x) for x in C_star[:10].tolist()],
}
if debug:
print(f"[LRMC] Loaded {seeds_json} (md5={info['json_md5']}) | "
f"top_size={info['top_cluster_size']} K={info['K']} outside={info['n_outside']} "
f"first10={info['first_members']}")
return node2cluster, cluster_scores, info
# --------------------------
# Models (baseline + pooled)
# --------------------------
class GCN2(nn.Module):
def __init__(self, in_dim, hid, out_dim, dropout=0.5):
super().__init__()
self.conv1 = GCNConv(in_dim, hid)
self.conv2 = GCNConv(hid, out_dim)
self.dropout = dropout
def forward(self, x, edge_index):
x = F.relu(self.conv1(x, edge_index))
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.conv2(x, edge_index)
return x
class OneClusterPool(nn.Module):
def __init__(self,
in_dim: int,
hid: int,
out_dim: int,
node2cluster: Tensor,
edge_index_node: Tensor,
num_nodes: int,
self_loop_scale: float = 0.0,
use_a2_for_clusters: bool = False,
debug_header: str = ""):
super().__init__()
self.n2c = node2cluster.long()
self.K = int(self.n2c.max().item()) + 1
# Node graph (A + λI if desired)
ei_node = edge_index_node
ei_node, ew_node = add_scaled_self_loops(ei_node, None, num_nodes, scale=self_loop_scale)
self.register_buffer("edge_index_node", ei_node)
self.register_buffer("edge_weight_node", ew_node)
# Cluster graph
ei_for_c = adjacency_power(edge_index_node, num_nodes, k=2) if use_a2_for_clusters else edge_index_node
edge_index_c, edge_weight_c, K = build_cluster_graph(ei_for_c, num_nodes, self.n2c)
self.register_buffer("edge_index_c", edge_index_c)
self.register_buffer("edge_weight_c", edge_weight_c)
self.K = K
if debug_header:
print(f"[POOL] {debug_header} | cluster_edges={edge_index_c.size(1)} (K={K})")
# Layers
self.gcn_node1 = GCNConv(in_dim, hid, add_self_loops=False, normalize=True)
self.gcn_cluster = GCNConv(hid, hid, add_self_loops=True, normalize=True)
self.gcn_node2 = GCNConv(hid * 2, out_dim) # concat [h_node, h_broadcast]
def forward(self, x: Tensor, edge_index_node: Tensor) -> Tensor:
h1 = F.relu(self.gcn_node1(x, self.edge_index_node, self.edge_weight_node))
z = scatter_mean(h1, self.n2c, dim=0, dim_size=self.K) # [K, H]
z2 = F.relu(self.gcn_cluster(z, self.edge_index_c, self.edge_weight_c))
hb = z2[self.n2c] # [N, H]
hcat = torch.cat([h1, hb], dim=1) # [N, 2H]
out = self.gcn_node2(hcat, edge_index_node)
return out
# -------------
# Training glue
# -------------
@torch.no_grad()
def accuracy(logits: Tensor, y: Tensor, mask: Tensor) -> float:
pred = logits[mask].argmax(dim=1)
return (pred == y[mask]).float().mean().item()
def run_train_eval(model: nn.Module, data, epochs=200, lr=0.01, wd=5e-4):
opt = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=wd)
best_val, best_state = 0.0, None
for ep in range(1, epochs + 1):
model.train()
opt.zero_grad(set_to_none=True)
logits = model(data.x, data.edge_index)
loss = F.cross_entropy(logits[data.train_mask], data.y[data.train_mask])
loss.backward(); opt.step()
model.eval()
logits = model(data.x, data.edge_index)
val_acc = accuracy(logits, data.y, data.val_mask)
if val_acc > best_val:
best_val, best_state = val_acc, {k: v.detach().clone() for k, v in model.state_dict().items()}
if ep % 20 == 0:
tr = accuracy(logits, data.y, data.train_mask)
te = accuracy(logits, data.y, data.test_mask)
print(f"[{ep:04d}] loss={loss.item():.4f} train={tr:.3f} val={val_acc:.3f} test={te:.3f}")
if best_state is not None:
model.load_state_dict(best_state)
model.eval()
logits = model(data.x, data.edge_index)
return {"val": accuracy(logits, data.y, data.val_mask),
"test": accuracy(logits, data.y, data.test_mask)}
# -----------
# Entrypoint
# -----------
def main():
ap = argparse.ArgumentParser()
ap.add_argument("--dataset", required=True, choices=["Cora", "Citeseer", "Pubmed"])
ap.add_argument("--seeds", required=True, help="Path to LRMC seeds JSON (single large graph).")
ap.add_argument("--variant", choices=["baseline", "pool"], default="pool")
ap.add_argument("--hidden", type=int, default=128)
ap.add_argument("--epochs", type=int, default=200)
ap.add_argument("--lr", type=float, default=0.01)
ap.add_argument("--wd", type=float, default=5e-4)
ap.add_argument("--dropout", type=float, default=0.5) # baseline only
ap.add_argument("--self_loop_scale", type=float, default=0.0)
ap.add_argument("--use_a2", action="store_true", help="Use A^2 for the cluster graph.")
ap.add_argument("--seed", type=int, default=42)
ap.add_argument("--debug", action="store_true", help="Print seeds md5, cluster size, K, etc.")
args = ap.parse_args()
torch.manual_seed(args.seed)
ds = Planetoid(root=f"./data/{args.dataset}", name=args.dataset)
data = ds[0]
in_dim, out_dim, n = ds.num_node_features, ds.num_classes, data.num_nodes
if args.variant == "baseline":
model = GCN2(in_dim, args.hidden, out_dim, dropout=args.dropout)
res = run_train_eval(model, data, epochs=args.epochs, lr=args.lr, wd=args.wd)
print(f"Baseline GCN: val={res['val']:.4f} test={res['test']:.4f}")
return
# pool variant
node2cluster, _, info = load_top1_assignment(args.seeds, n, debug=args.debug)
dbg_header = f"seeds_md5={info['json_md5']} top_size={info['top_cluster_size']} K={info['K']}"
model = OneClusterPool(in_dim=in_dim,
hid=args.hidden,
out_dim=out_dim,
node2cluster=node2cluster,
edge_index_node=data.edge_index,
num_nodes=n,
self_loop_scale=args.self_loop_scale,
use_a2_for_clusters=args.use_a2,
debug_header=dbg_header)
res = run_train_eval(model, data, epochs=args.epochs, lr=args.lr, wd=args.wd)
print(f"L-RMC (top-1 pool): val={res['val']:.4f} test={res['test']:.4f}")
if __name__ == "__main__":
main()
|