File size: 12,669 Bytes
bf620c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# 2.1_lrmc_bilevel.py
# Top-1 LRMC ablation with debug guards so seeds differences are visible.
# Requires: torch, torch_geometric, torch_scatter, torch_sparse

import argparse, json, hashlib
from pathlib import Path
from typing import List, Tuple, Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor

from torch_scatter import scatter_mean
from torch_sparse import coalesce, spspmm
from torch_geometric.datasets import Planetoid
from torch_geometric.nn import GCNConv


# ---------------------------
# Utilities: edges and seeds
# ---------------------------

def add_scaled_self_loops(edge_index: Tensor,
                          edge_weight: Optional[Tensor],
                          num_nodes: int,
                          scale: float = 1.0) -> Tuple[Tensor, Tensor]:
    if scale == 0.0:
        if edge_weight is None:
            edge_weight = torch.ones(edge_index.size(1), device=edge_index.device)
        return edge_index, edge_weight
    device = edge_index.device
    self_loops = torch.arange(num_nodes, device=device)
    self_index = torch.stack([self_loops, self_loops], dim=0)
    self_weight = torch.full((num_nodes,), float(scale), device=device)
    base_w = edge_weight if edge_weight is not None else torch.ones(edge_index.size(1), device=device)
    ei = torch.cat([edge_index, self_index], dim=1)
    ew = torch.cat([base_w, self_weight], dim=0)
    ei, ew = coalesce(ei, ew, num_nodes, num_nodes, op='add')
    return ei, ew


def adjacency_power(edge_index: Tensor, num_nodes: int, k: int = 2) -> Tensor:
    # A^2 using spspmm; return binary, coalesced, no self loops
    row, col = edge_index
    val = torch.ones(row.numel(), device=edge_index.device)
    Ai, Av = edge_index, val
    Ri, _ = spspmm(Ai, Av, Ai, Av, num_nodes, num_nodes, num_nodes)
    mask = Ri[0] != Ri[1]
    Ri = Ri[:, mask]
    Ri, _ = coalesce(Ri, torch.ones(Ri.size(1), device=edge_index.device), num_nodes, num_nodes, op='add')
    return Ri


def build_cluster_graph(edge_index: Tensor,
                        num_nodes: int,
                        node2cluster: Tensor,
                        weight_per_edge: Optional[Tensor] = None,
                        num_clusters: Optional[int] = None
                        ) -> Tuple[Tensor, Tensor, int]:
    K = int(node2cluster.max().item()) + 1 if num_clusters is None else num_clusters
    src, dst = edge_index
    csrc = node2cluster[src]
    cdst = node2cluster[dst]
    edge_c = torch.stack([csrc, cdst], dim=0)
    w = weight_per_edge if weight_per_edge is not None else torch.ones(edge_c.size(1), device=edge_c.device)
    edge_c, w = coalesce(edge_c, w, K, K, op='add')
    return edge_c, w, K


# -----
# Seeds
# -----

def _md5(path: Path) -> str:
    h = hashlib.md5()
    with path.open('rb') as f:
        for chunk in iter(lambda: f.read(8192), b''):
            h.update(chunk)
    return h.hexdigest()


def _extract_members(cluster_obj: dict) -> List[int]:
    """
    Try 'members' first, then 'seed_nodes'. Raise if neither works.
    """
    m = cluster_obj.get("members", None)
    if isinstance(m, list) and len(m) > 0:
        return list(dict.fromkeys(int(x) for x in m))  # dedupe/preserve order
    m2 = cluster_obj.get("seed_nodes", None)
    if isinstance(m2, list) and len(m2) > 0:
        return list(dict.fromkeys(int(x) for x in m2))
    # If both present but empty, return empty; caller will handle.
    if isinstance(m, list) or isinstance(m2, list):
        return []
    raise KeyError("Cluster object has neither 'members' nor 'seed_nodes'.")


def _pick_top1_cluster(obj: dict) -> List[int]:
    """
    From {"clusters":[{..., "score":float, "members" or "seed_nodes"}, ...]},
    choose max by (score, size). Returns deduped member list.
    """
    clusters = obj.get("clusters", [])
    if not isinstance(clusters, list) or len(clusters) == 0:
        return []
    def keyfun(c):
        score = float(c.get("score", 0.0))
        try:
            mem = _extract_members(c)
        except KeyError:
            mem = []
        return (score, len(mem))
    best = max(clusters, key=keyfun)
    try:
        members = _extract_members(best)
    except KeyError:
        members = []
    return sorted(set(int(x) for x in members))


def load_top1_assignment(seeds_json: str, n_nodes: int, debug: bool = False) -> Tuple[Tensor, Tensor, dict]:
    """
    Hard assignment for top-1 LRMC cluster:
      cluster 0 = top cluster; others are singletons.
    Returns node2cluster[N], cluster_scores[K,1], and a small debug dict.
    """
    p = Path(seeds_json)
    text = p.read_text(encoding='utf-8')
    obj = json.loads(text)

    C_star = _pick_top1_cluster(obj)
    # if len(C_star) > 0 and max(C_star) == n_nodes:
    # Looks 1-indexed (since max == N, not N-1) → shift down by 1
    C_star = [u - 1 for u in C_star]
    C_star = torch.tensor(C_star, dtype=torch.long)

    # C_star = _pick_top1_cluster(obj)
    # C_star = torch.tensor(C_star, dtype=torch.long)
    node2cluster = torch.full((n_nodes,), -1, dtype=torch.long)

    if C_star.numel() == 0:
        # FAIL LOUDLY instead of silently falling back to identity
        raise RuntimeError(
            f"No members found for top-1 cluster in {seeds_json}. "
            f"Expected 'members' or 'seed_nodes' to be non-empty."
        )

    node2cluster[C_star] = 0
    outside = torch.tensor(sorted(set(range(n_nodes)) - set(C_star.tolist())), dtype=torch.long)
    if outside.numel() > 0:
        node2cluster[outside] = torch.arange(1, 1 + outside.numel(), dtype=torch.long)
    assert int(node2cluster.min()) >= 0

    K = 1 + outside.numel()
    cluster_scores = torch.zeros(K, 1, dtype=torch.float32)
    cluster_scores[0, 0] = 1.0

    info = {
        "json_md5": _md5(p),
        "top_cluster_size": int(C_star.numel()),
        "K": int(K),
        "n_outside": int(outside.numel()),
        "first_members": [int(x) for x in C_star[:10].tolist()],
    }
    if debug:
        print(f"[LRMC] Loaded {seeds_json} (md5={info['json_md5']}) | "
              f"top_size={info['top_cluster_size']} K={info['K']} outside={info['n_outside']} "
              f"first10={info['first_members']}")
    return node2cluster, cluster_scores, info


# --------------------------
# Models (baseline + pooled)
# --------------------------

class GCN2(nn.Module):
    def __init__(self, in_dim, hid, out_dim, dropout=0.5):
        super().__init__()
        self.conv1 = GCNConv(in_dim, hid)
        self.conv2 = GCNConv(hid, out_dim)
        self.dropout = dropout
    def forward(self, x, edge_index):
        x = F.relu(self.conv1(x, edge_index))
        x = F.dropout(x, p=self.dropout, training=self.training)
        x = self.conv2(x, edge_index)
        return x


class OneClusterPool(nn.Module):
    def __init__(self,
                 in_dim: int,
                 hid: int,
                 out_dim: int,
                 node2cluster: Tensor,
                 edge_index_node: Tensor,
                 num_nodes: int,
                 self_loop_scale: float = 0.0,
                 use_a2_for_clusters: bool = False,
                 debug_header: str = ""):
        super().__init__()
        self.n2c = node2cluster.long()
        self.K = int(self.n2c.max().item()) + 1

        # Node graph (A + λI if desired)
        ei_node = edge_index_node
        ei_node, ew_node = add_scaled_self_loops(ei_node, None, num_nodes, scale=self_loop_scale)
        self.register_buffer("edge_index_node", ei_node)
        self.register_buffer("edge_weight_node", ew_node)

        # Cluster graph
        ei_for_c = adjacency_power(edge_index_node, num_nodes, k=2) if use_a2_for_clusters else edge_index_node
        edge_index_c, edge_weight_c, K = build_cluster_graph(ei_for_c, num_nodes, self.n2c)
        self.register_buffer("edge_index_c", edge_index_c)
        self.register_buffer("edge_weight_c", edge_weight_c)
        self.K = K

        if debug_header:
            print(f"[POOL] {debug_header} | cluster_edges={edge_index_c.size(1)} (K={K})")

        # Layers
        self.gcn_node1 = GCNConv(in_dim, hid, add_self_loops=False, normalize=True)
        self.gcn_cluster = GCNConv(hid, hid, add_self_loops=True,  normalize=True)
        self.gcn_node2 = GCNConv(hid * 2, out_dim)  # concat [h_node, h_broadcast]

    def forward(self, x: Tensor, edge_index_node: Tensor) -> Tensor:
        h1 = F.relu(self.gcn_node1(x, self.edge_index_node, self.edge_weight_node))
        z  = scatter_mean(h1, self.n2c, dim=0, dim_size=self.K)          # [K, H]
        z2 = F.relu(self.gcn_cluster(z, self.edge_index_c, self.edge_weight_c))
        hb = z2[self.n2c]                                                # [N, H]
        hcat = torch.cat([h1, hb], dim=1)                                # [N, 2H]
        out = self.gcn_node2(hcat, edge_index_node)
        return out


# -------------
# Training glue
# -------------

@torch.no_grad()
def accuracy(logits: Tensor, y: Tensor, mask: Tensor) -> float:
    pred = logits[mask].argmax(dim=1)
    return (pred == y[mask]).float().mean().item()


def run_train_eval(model: nn.Module, data, epochs=200, lr=0.01, wd=5e-4):
    opt = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=wd)
    best_val, best_state = 0.0, None
    for ep in range(1, epochs + 1):
        model.train()
        opt.zero_grad(set_to_none=True)
        logits = model(data.x, data.edge_index)
        loss = F.cross_entropy(logits[data.train_mask], data.y[data.train_mask])
        loss.backward(); opt.step()

        model.eval()
        logits = model(data.x, data.edge_index)
        val_acc = accuracy(logits, data.y, data.val_mask)
        if val_acc > best_val:
            best_val, best_state = val_acc, {k: v.detach().clone() for k, v in model.state_dict().items()}
        if ep % 20 == 0:
            tr = accuracy(logits, data.y, data.train_mask)
            te = accuracy(logits, data.y, data.test_mask)
            print(f"[{ep:04d}] loss={loss.item():.4f}  train={tr:.3f}  val={val_acc:.3f}  test={te:.3f}")

    if best_state is not None:
        model.load_state_dict(best_state)
    model.eval()
    logits = model(data.x, data.edge_index)
    return {"val": accuracy(logits, data.y, data.val_mask),
            "test": accuracy(logits, data.y, data.test_mask)}


# -----------
# Entrypoint
# -----------

def main():
    ap = argparse.ArgumentParser()
    ap.add_argument("--dataset", required=True, choices=["Cora", "Citeseer", "Pubmed"])
    ap.add_argument("--seeds", required=True, help="Path to LRMC seeds JSON (single large graph).")
    ap.add_argument("--variant", choices=["baseline", "pool"], default="pool")
    ap.add_argument("--hidden", type=int, default=128)
    ap.add_argument("--epochs", type=int, default=200)
    ap.add_argument("--lr", type=float, default=0.01)
    ap.add_argument("--wd", type=float, default=5e-4)
    ap.add_argument("--dropout", type=float, default=0.5)  # baseline only
    ap.add_argument("--self_loop_scale", type=float, default=0.0)
    ap.add_argument("--use_a2", action="store_true", help="Use A^2 for the cluster graph.")
    ap.add_argument("--seed", type=int, default=42)
    ap.add_argument("--debug", action="store_true", help="Print seeds md5, cluster size, K, etc.")
    args = ap.parse_args()

    torch.manual_seed(args.seed)

    ds = Planetoid(root=f"./data/{args.dataset}", name=args.dataset)
    data = ds[0]
    in_dim, out_dim, n = ds.num_node_features, ds.num_classes, data.num_nodes

    if args.variant == "baseline":
        model = GCN2(in_dim, args.hidden, out_dim, dropout=args.dropout)
        res = run_train_eval(model, data, epochs=args.epochs, lr=args.lr, wd=args.wd)
        print(f"Baseline GCN: val={res['val']:.4f}  test={res['test']:.4f}")
        return

    # pool variant
    node2cluster, _, info = load_top1_assignment(args.seeds, n, debug=args.debug)
    dbg_header = f"seeds_md5={info['json_md5']} top_size={info['top_cluster_size']} K={info['K']}"

    model = OneClusterPool(in_dim=in_dim,
                           hid=args.hidden,
                           out_dim=out_dim,
                           node2cluster=node2cluster,
                           edge_index_node=data.edge_index,
                           num_nodes=n,
                           self_loop_scale=args.self_loop_scale,
                           use_a2_for_clusters=args.use_a2,
                           debug_header=dbg_header)

    res = run_train_eval(model, data, epochs=args.epochs, lr=args.lr, wd=args.wd)
    print(f"L-RMC (top-1 pool): val={res['val']:.4f}  test={res['test']:.4f}")


if __name__ == "__main__":
    main()