File size: 10,483 Bytes
bf620c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import java.io.FileReader;
import java.io.IOException;
import java.util.*;
import java.util.function.Consumer;

public class clique2_ablations_streamsafe {
    static int n, m;

    public static List<SnapshotDTO> main(String[] args) throws Exception {
        if (args.length < 2) {
            System.err.println("Usage: java clique2_ablations <epsilon> <inputfile>");
        }
        final double EPS = Double.parseDouble(args[0]);

        Scanner r;
        try {
            r = new Scanner(new FileReader(args[1]));
        } catch (IOException e) {
            System.err.println("Could not open " + args[1] + ". Falling back to stdin.");
            r = new Scanner(System.in);
        }

        n = r.nextInt();
        m = r.nextInt();

        @SuppressWarnings("unchecked")
        List<Integer>[] adj = new ArrayList[n + 1];
        for (int i = 1; i <= n; i++) adj[i] = new ArrayList<>();
        for (int i = 0; i < m; i++) {
            int a = r.nextInt(), b = r.nextInt();
            adj[a].add(b);
            adj[b].add(a);
        }
        r.close();

        long t0 = System.nanoTime();
        List<SnapshotDTO> res = runLaplacianRMC(adj);  // <- optimized O(Mk)
        long t1 = System.nanoTime();

//        System.out.printf(Locale.US, "%.6f, %d%n", res.bestSL, res.bestRoot);
        System.out.printf(Locale.US, "Runtime: %.3f ms%n", (t1 - t0) / 1_000_000.0);
        return res;
    }

    public static List<SnapshotDTO> runLaplacianRMC(List<Integer>[] adj1Based) {
        ArrayList<SnapshotDTO> out = new ArrayList<>();
        runLaplacianRMCStreaming(adj1Based, out::add);
        return out;
    }

    /**
     * Optimized O(Mk) algorithm using reverse-peeling orientation + pred_sum pushes.
     */
    public static List<SnapshotDTO> runLaplacianRMCStreaming(List<Integer>[] adj,
                                                             Consumer<SnapshotDTO> sink) {
        final int n = adj.length - 1;        // infer n from 1-based adjacency

        // Phase 1: peeling (same as before)
        int[] deg0 = new int[n + 1];
        PriorityQueue<Pair> pq = new PriorityQueue<>();
        for (int i = 1; i <= n; i++) {
            deg0[i] = adj[i].size();
            pq.add(new Pair(i, deg0[i]));
        }
        Deque<Integer> peelStack = new ArrayDeque<>(n); // store nodes only
        while (!pq.isEmpty()) {
            Pair p = pq.poll();
            if (p.degree != deg0[p.node]) continue; // stale
            peelStack.push(p.node);
            for (int v : adj[p.node]) {
                if (deg0[v] > 0) {
                    deg0[v]--;
                    pq.add(new Pair(v, deg0[v]));
                }
            }
            deg0[p.node] = 0;
        }

        // Build addition order and index
        int[] addOrder = new int[n];
        int[] idx = new int[n + 1];
        for (int t = 0; t < n; t++) {
            int u = peelStack.pop(); // reverse-peeling (addition order)
            addOrder[t] = u;
            idx[u] = t;
        }

        // Phase 1.5: orient edges by idx and sort successors
        @SuppressWarnings("unchecked")
        ArrayList<Integer>[] succ = new ArrayList[n + 1];
        @SuppressWarnings("unchecked")
        ArrayList<Integer>[] pred = new ArrayList[n + 1];
        for (int i = 1; i <= n; i++) { succ[i] = new ArrayList<>(); pred[i] = new ArrayList<>(); }

        for (int u = 1; u <= n; u++) {
            for (int v : adj[u]) {
                if (u < v) { // handle undirected edge once
                    if (idx[u] < idx[v]) {
                        succ[u].add(v);
                        pred[v].add(u);
                    } else {
                        succ[v].add(u);
                        pred[u].add(v);
                    }
                }
            }
        }
        for (int v = 1; v <= n; v++) {
            if (succ[v].size() > 1) {
                succ[v].sort(Comparator.comparingInt(w -> idx[w]));
            }
            // pred[v] need not be sorted
        }

        // Phase 2: reverse reconstruction with O(k) per edge
        DSU dsu = new DSU(n); // tracks parent, size, and Q (double)
        int[] deg = new int[n + 1];          // current degree
        long[] predSum = new long[n + 1];    // sum of degrees of predecessors

        double bestSL = 0.0;
        int bestRoot = 0;

        // helper: sum of degrees of active successors of v whose idx < T
        final SumSucc sumSucc = new SumSucc(succ, idx, deg);

        @SuppressWarnings("unchecked")
        HashSet<Integer>[] compNodes = new HashSet[n + 1];
        for (int i = 1; i <= n; i++) compNodes[i] = new HashSet<>();

        List<SnapshotDTO> recon = new ArrayList<>();

        for (int u : addOrder) {
            dsu.makeIfNeeded(u); // create singleton component
            // Single-node score (Q=0)

            long Su = 0L; // running sum over degrees of neighbors already attached to u
            final int Tu = idx[u];

            compNodes[u].add(u);

            // connect u to all its predecessors (earlier neighbors)
            for (int v : pred[u]) {
                long a = deg[u];
                long b = deg[v];

                // S_v = pred_sum[v] + sum of deg[w] for successors w of v with idx[w] < idx[u]
                long Sv = predSum[v] + sumSucc.until(v, Tu);

                long dQu = 2L * a * a - 2L * Su + a;
                long dQv = 2L * b * b - 2L * Sv + b;
                long edgeTerm = (a - b) * (a - b);

                int ru = dsu.find(u);
                int rv = dsu.find(v);

                dsu.Q[ru] += (double) dQu;
                dsu.Q[rv] += (double) dQv;

                int r;
                if (ru != rv) {
                    r = dsu.union(ru, rv);
                    dsu.Q[r] += (double) edgeTerm;
                    int o = (r == ru) ? rv : ru;
                    compNodes[r].addAll(compNodes[o]);
                    compNodes[o].clear();
                } else {
                    r = ru;
                    dsu.Q[r] += (double) edgeTerm;
                }

                // degree increments
                deg[u] += 1;
                deg[v] += 1;

                // Update sumDeg for the component - THIS WAS MISSING
                dsu.sumDeg[r] += 2;

                // push +1 to predSum of successors (outdegree ≤ k)
                for (int y : succ[u]) predSum[y] += 1;
                for (int y : succ[v]) predSum[y] += 1;

                // maintain Su: add deg[v] AFTER its increment
                Su += deg[v];
            }

            int r = dsu.find(u);
            int[] nodes = compNodes[r].stream().mapToInt(x -> x-1).toArray();
            Arrays.sort(nodes);

            int compId = dsu.componentId(r);
            SnapshotDTO snap = new SnapshotDTO(compId, nodes, nodes.length, dsu.sumDeg[r], dsu.Q[r]);
            sink.accept(snap);
        }

        return recon;
    }

    // Small helper for successor-degree partial sums
    static final class SumSucc {
        final ArrayList<Integer>[] succ;
        final int[] idx;
        final int[] deg;

        SumSucc(ArrayList<Integer>[] succ, int[] idx, int[] deg) {
            this.succ = succ; this.idx = idx; this.deg = deg;
        }

        /** Sum of deg[w] over successors w of v with idx[w] < T (succ[v] sorted by idx). */
        long until(int v, int T) {
            long s = 0L;
            final ArrayList<Integer> sv = succ[v];
            final int sz = sv.size();
            for (int i = 0; i < sz; i++) {
                int w = sv.get(i);
                if (idx[w] >= T) break;
                s += deg[w];
            }
            return s;
        }
    }

    // Helpers

    static class Result {
        double bestSL;
        int bestRoot;
    }

    static class Pair implements Comparable<Pair> {
        final int node, degree;
        Pair(int node, int degree) { this.node = node; this.degree = degree; }
        public int compareTo(Pair o) {
            if (degree != o.degree) return Integer.compare(degree, o.degree);
            return Integer.compare(node, o.node);
        }
    }

    /** DSU that also tracks component Laplacian Q as double. */
    static class DSU {
        final int[] parent;
        final int[] size;
        final boolean[] made;
        final double[] Q;
        final int[] sumDeg;
        final int[] compId;        // compId[root] > 0 iff the root represents a live component
        int nextCompId = 1;        // 1-based; 0 means "unassigned"

        DSU(int n) {
            parent = new int[n + 1];
            size = new int[n + 1];
            made = new boolean[n + 1];
            Q = new double[n + 1];
            sumDeg = new int[n + 1];
            compId = new int[n + 1];
        }
        void makeIfNeeded(int v) {
            if (!made[v]) {
                made[v] = true;
                parent[v] = v;
                size[v] = 1;
                Q[v] = 0.0;
                sumDeg[v] = 0;
                if (compId[v] == 0) compId[v] = nextCompId++;
            }
        }
        int find(int v) {
            if (!made[v]) return v; // treat as isolated until made
            if (parent[v] != v) parent[v] = find(parent[v]);
            return parent[v];
        }
        int union(int a, int b) {
            makeIfNeeded(a);
            makeIfNeeded(b);
            int ra = find(a), rb = find(b);
            if (ra == rb) return ra;
            if (size[ra] < size[rb]) { int t = ra; ra = rb; rb = t; }
            parent[rb] = ra;
            size[ra] += size[rb];
            Q[ra] += Q[rb];
            sumDeg[ra] += sumDeg[rb];

            int aId = compId[ra], bId = compId[rb];
            int keep = (aId == 0) ? bId : (bId == 0 ? aId : Math.min(aId, bId));
            compId[ra] = keep;
            compId[rb] = 0;  // retire loser id

            return ra;
        }

        int componentId(int v) { return compId[find(v)]; }
    }

    public static final class SnapshotDTO {
        public final int componentId;
        public final int[] nodes; // 0-based ids in the original graph
        public final int nC;
        public final long sumDegIn; // sum of internal degrees at this snapshot
        public final double Q;      // d^T L_C d at this snapshot
        public SnapshotDTO(int componentId, int[] nodes, int nC, long sumDegIn, double Q) { this.componentId = componentId; this.nodes = nodes; this.nC = nC; this.sumDegIn = sumDegIn; this.Q = Q; }
    }
}