codelion commited on
Commit
54c5e94
·
verified ·
1 Parent(s): 7bbd5cf

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Coder-0.5B-Instruct
3
+ tags:
4
+ - ellora
5
+ - lora
6
+ - long-context
7
+ - repository-understanding
8
+ - code-analysis
9
+ - progressive-training
10
+ - 2m-context
11
+ - unsloth
12
+ - vllm
13
+ - peft
14
+ library_name: peft
15
+ license: apache-2.0
16
+ language:
17
+ - en
18
+ pipeline_tag: text-generation
19
+ datasets:
20
+ - codelion/Qwen2.5-Coder-0.5B-Instruct-progressive-2M-context
21
+ ---
22
+
23
+ # codelion/qwen2-5-coder-0-5b-instruct-progressive-2000k-lora
24
+
25
+ ## 🚀 Progressive Context Extension to 2.0M Tokens
26
+
27
+ This is a progressive LoRA adapter that extends Qwen/Qwen2.5-Coder-0.5B-Instruct to handle **2.0 MILLION token** contexts through curriculum learning.
28
+
29
+ Part of the [Ellora project](https://github.com/codelion/ellora) - Recipe #4: Progressive Long Context Extension.
30
+
31
+ ## 🎯 Key Features
32
+
33
+ - **Final Context**: 2,000,000 tokens (62x base model)
34
+ - **Training Method**: Hybrid approach with vLLM + Unsloth optimizations
35
+ - **Data Generation**: vLLM for 10x+ faster task generation
36
+ - **Training**: Unsloth for memory-efficient progressive training
37
+ - **Single Adapter**: One LoRA handles all context lengths up to 2000K
38
+ - **Use Cases**:
39
+ - Entire codebase analysis
40
+ - Multi-repository understanding
41
+ - Large-scale code generation
42
+ - Cross-file dependency analysis
43
+
44
+ ## 📊 Training Progression
45
+
46
+ The model was trained progressively through these stages:
47
+ - Stage 1: 32K tokens (loss: 0.4882)
48
+ - Stage 2: 128K tokens (loss: 0.0641)
49
+ - Stage 3: 512K tokens (loss: 0.1327)
50
+ - Stage 4: 2000K tokens (loss: 0.0484)
51
+
52
+ ### Performance Metrics
53
+ - **Final Training Loss**: 0.0484
54
+ - **Total Training Time**: 0.17 hours
55
+ - **Peak Memory Usage**: 4.7 GB
56
+ - **LoRA Rank**: 64
57
+ - **LoRA Alpha**: 128
58
+
59
+ ## 🔧 Usage with Unsloth
60
+
61
+ ```python
62
+ from unsloth import FastLanguageModel
63
+ from transformers import TextStreamer
64
+
65
+ # Load model with Unsloth (automatically handles 2M context!)
66
+ model, tokenizer = FastLanguageModel.from_pretrained(
67
+ model_name="codelion/qwen2-5-coder-0-5b-instruct-progressive-2000k-lora",
68
+ max_seq_length=2000000,
69
+ dtype=None, # Auto-detect
70
+ load_in_4bit=True,
71
+ )
72
+
73
+ # Enable native fast generation
74
+ FastLanguageModel.for_inference(model)
75
+
76
+ # Example: Analyze a large codebase
77
+ prompt = """Repository Context:
78
+ [Your repository content up to 2000K tokens]
79
+
80
+ Question: Analyze the overall architecture and provide improvement suggestions.
81
+
82
+ Answer:"""
83
+
84
+ inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2000000)
85
+ streamer = TextStreamer(tokenizer)
86
+
87
+ outputs = model.generate(
88
+ **inputs,
89
+ streamer=streamer,
90
+ max_new_tokens=1024,
91
+ temperature=0.7,
92
+ do_sample=True
93
+ )
94
+ ```
95
+
96
+ ## 🔧 Usage with Transformers
97
+
98
+ ```python
99
+ from transformers import AutoModelForCausalLM, AutoTokenizer
100
+ from peft import PeftModel
101
+ import torch
102
+
103
+ # Load base model
104
+ model = AutoModelForCausalLM.from_pretrained(
105
+ "Qwen/Qwen2.5-Coder-0.5B-Instruct",
106
+ torch_dtype=torch.bfloat16,
107
+ device_map="auto",
108
+ trust_remote_code=True,
109
+ attn_implementation="flash_attention_2"
110
+ )
111
+
112
+ # Load tokenizer
113
+ tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-0.5B-Instruct")
114
+
115
+ # Load the progressive adapter
116
+ model = PeftModel.from_pretrained(model, "codelion/qwen2-5-coder-0-5b-instruct-progressive-2000k-lora")
117
+
118
+ # Now you can use contexts up to 2000K tokens!
119
+ ```
120
+
121
+ ## 📈 Progressive Training Details
122
+
123
+ This adapter was trained using a novel progressive curriculum approach with hybrid optimizations:
124
+
125
+ 1. **Stage 1 (32K)**: Basic file-level understanding
126
+ 2. **Stage 2 (128K)**: Multi-file repository comprehension
127
+ 3. **Stage 3 (512K)**: Large repository analysis
128
+ 4. **Stage 4 (2M)**: Massive codebase understanding
129
+
130
+ Each stage included data from all previous stages, allowing the model to maintain and build upon its learned capabilities.
131
+
132
+ ## 🛠️ Training Configuration
133
+
134
+ ```yaml
135
+ Progressive Stages: 32K → 128K → 512K → 2000K
136
+ Final Context: 2000K tokens
137
+ Base Model: Qwen/Qwen2.5-Coder-0.5B-Instruct
138
+ Data Generation: vLLM (fast batch inference)
139
+ Training: Unsloth (memory-efficient training)
140
+ LoRA Rank: 64
141
+ LoRA Alpha: 128
142
+ Learning Rate: 0.0002
143
+ Batch Size: 1
144
+ Gradient Accumulation: 4
145
+ ```
146
+
147
+ ## 🚀 Optimizations Used
148
+
149
+ ### Data Generation (vLLM)
150
+ - **Batch Generation**: Process multiple prompts simultaneously
151
+ - **Optimized Memory**: GPU memory utilization tuning
152
+ - **Fast Inference**: 10x+ faster than sequential generation
153
+
154
+ ### Training (Unsloth)
155
+ - **Custom CUDA Kernels**: 2-5x training speedup
156
+ - **Flash Attention 2**: Efficient attention computation
157
+ - **Gradient Checkpointing**: Memory-efficient backprop
158
+ - **4-bit Quantization**: Reduced memory footprint
159
+ - **RSLoRA**: Rank-stabilized LoRA for better convergence
160
+
161
+ ## 📊 Evaluation Tasks
162
+
163
+ The model excels at:
164
+ - Complete repository architectural analysis
165
+ - Cross-file dependency tracing
166
+ - Large-scale refactoring suggestions
167
+ - Security vulnerability detection across entire codebases
168
+ - Test coverage analysis
169
+ - Documentation generation for entire projects
170
+
171
+ ## 🏆 Achievements
172
+
173
+ - Successfully extended context from 32K → 2000K tokens
174
+ - Hybrid optimization: vLLM for generation + Unsloth for training
175
+ - Single adapter handles all context lengths
176
+ - Memory-efficient training on single H100 GPU
177
+ - Real repository understanding, not just synthetic data
178
+
179
+ ## 🔗 Links
180
+
181
+ - **GitHub**: [Ellora Recipe #4](https://github.com/codelion/ellora)
182
+ - **Dataset**: [codelion/Qwen2.5-Coder-0.5B-Instruct-progressive-2M-context](https://huggingface.co/datasets/codelion/Qwen2.5-Coder-0.5B-Instruct-progressive-2M-context)
183
+
184
+ ---
185
+
186
+ *This model is part of the Ellora project - standardized recipes for enhancing LLM capabilities.*
adapter_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/qwen2.5-coder-0.5b-instruct-bnb-4bit",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 128,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": [
22
+ "lm_head",
23
+ "embed_tokens"
24
+ ],
25
+ "peft_type": "LORA",
26
+ "qalora_group_size": 16,
27
+ "r": 64,
28
+ "rank_pattern": {},
29
+ "revision": null,
30
+ "target_modules": [
31
+ "up_proj",
32
+ "k_proj",
33
+ "v_proj",
34
+ "o_proj",
35
+ "gate_proj",
36
+ "down_proj",
37
+ "q_proj"
38
+ ],
39
+ "task_type": "CAUSAL_LM",
40
+ "trainable_token_indices": null,
41
+ "use_dora": false,
42
+ "use_qalora": false,
43
+ "use_rslora": true
44
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84d28512aa5753146be3b71fde56c5bb4a00c407bd27abfd376235d9e025dc11
3
+ size 614969992
added_tokens.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|PAD_TOKEN|>": 151665,
5
+ "<|box_end|>": 151649,
6
+ "<|box_start|>": 151648,
7
+ "<|endoftext|>": 151643,
8
+ "<|file_sep|>": 151664,
9
+ "<|fim_middle|>": 151660,
10
+ "<|fim_pad|>": 151662,
11
+ "<|fim_prefix|>": 151659,
12
+ "<|fim_suffix|>": 151661,
13
+ "<|im_end|>": 151645,
14
+ "<|im_start|>": 151644,
15
+ "<|image_pad|>": 151655,
16
+ "<|object_ref_end|>": 151647,
17
+ "<|object_ref_start|>": 151646,
18
+ "<|quad_end|>": 151651,
19
+ "<|quad_start|>": 151650,
20
+ "<|repo_name|>": 151663,
21
+ "<|video_pad|>": 151656,
22
+ "<|vision_end|>": 151653,
23
+ "<|vision_pad|>": 151654,
24
+ "<|vision_start|>": 151652
25
+ }
chat_template.jinja ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0]['role'] == 'system' %}
4
+ {{- messages[0]['content'] }}
5
+ {%- else %}
6
+ {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
7
+ {%- endif %}
8
+ {{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
9
+ {%- for tool in tools %}
10
+ {{- "\n" }}
11
+ {{- tool | tojson }}
12
+ {%- endfor %}
13
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
14
+ {%- else %}
15
+ {%- if messages[0]['role'] == 'system' %}
16
+ {{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
17
+ {%- else %}
18
+ {{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
19
+ {%- endif %}
20
+ {%- endif %}
21
+ {%- for message in messages %}
22
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
23
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
24
+ {%- elif message.role == "assistant" %}
25
+ {{- '<|im_start|>' + message.role }}
26
+ {%- if message.content %}
27
+ {{- '\n' + message.content }}
28
+ {%- endif %}
29
+ {%- for tool_call in message.tool_calls %}
30
+ {%- if tool_call.function is defined %}
31
+ {%- set tool_call = tool_call.function %}
32
+ {%- endif %}
33
+ {{- '\n<tool_call>\n{"name": "' }}
34
+ {{- tool_call.name }}
35
+ {{- '", "arguments": ' }}
36
+ {{- tool_call.arguments | tojson }}
37
+ {{- '}\n</tool_call>' }}
38
+ {%- endfor %}
39
+ {{- '<|im_end|>\n' }}
40
+ {%- elif message.role == "tool" %}
41
+ {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
42
+ {{- '<|im_start|>user' }}
43
+ {%- endif %}
44
+ {{- '\n<tool_response>\n' }}
45
+ {{- message.content }}
46
+ {{- '\n</tool_response>' }}
47
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
48
+ {{- '<|im_end|>\n' }}
49
+ {%- endif %}
50
+ {%- endif %}
51
+ {%- endfor %}
52
+ {%- if add_generation_prompt %}
53
+ {{- '<|im_start|>assistant\n' }}
54
+ {%- endif %}
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|PAD_TOKEN|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a49c1b786ba7cd9c539085ebc8eb83025f6b16a7ce910a34b35957768c4b52a7
3
+ size 11422185
tokenizer_config.json ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<|PAD_TOKEN|>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ }
189
+ },
190
+ "additional_special_tokens": [
191
+ "<|im_start|>",
192
+ "<|im_end|>",
193
+ "<|object_ref_start|>",
194
+ "<|object_ref_end|>",
195
+ "<|box_start|>",
196
+ "<|box_end|>",
197
+ "<|quad_start|>",
198
+ "<|quad_end|>",
199
+ "<|vision_start|>",
200
+ "<|vision_end|>",
201
+ "<|vision_pad|>",
202
+ "<|image_pad|>",
203
+ "<|video_pad|>"
204
+ ],
205
+ "bos_token": null,
206
+ "clean_up_tokenization_spaces": false,
207
+ "eos_token": "<|im_end|>",
208
+ "errors": "replace",
209
+ "extra_special_tokens": {},
210
+ "model_max_length": 2000000,
211
+ "pad_token": "<|PAD_TOKEN|>",
212
+ "padding_side": "right",
213
+ "split_special_tokens": false,
214
+ "tokenizer_class": "Qwen2Tokenizer",
215
+ "unk_token": null
216
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff