Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: gemma
|
4 |
+
tags:
|
5 |
+
- gemma-3
|
6 |
+
- chess
|
7 |
+
- instruction-tuning
|
8 |
+
- sft
|
9 |
+
- lora
|
10 |
+
- merged
|
11 |
+
- unsloth
|
12 |
+
- trl
|
13 |
+
- small-model
|
14 |
+
base_model: unsloth/gemma-3-270m-it
|
15 |
+
library_name: transformers
|
16 |
+
pipeline_tag: text-generation
|
17 |
+
datasets:
|
18 |
+
- Thytu/ChessInstruct
|
19 |
+
model-index:
|
20 |
+
- name: Finetuned-gemma3-270m-chess-merged
|
21 |
+
results: []
|
22 |
+
---
|
23 |
+
|
24 |
+
# Gemma-3 270M — Chess Coach (Merged FP16)
|
25 |
+
|
26 |
+
**Author:** [@codertrish](https://huggingface.co/codertrish)
|
27 |
+
**Base model:** [`unsloth/gemma-3-270m-it`](https://huggingface.co/unsloth/gemma-3-270m-it)
|
28 |
+
**Type:** *Merged* FP16 checkpoint (LoRA deltas baked into base — no adapters needed)
|
29 |
+
**Task:** Conversational chess tutoring (rules, beginner principles, simple reasoning)
|
30 |
+
|
31 |
+
---
|
32 |
+
|
33 |
+
## TL;DR
|
34 |
+
|
35 |
+
- This is a **plug-and-play** Gemma-3 (270M) checkpoint specialized for **chess coaching**.
|
36 |
+
- It was fine-tuned via **LoRA** on a subset of **`Thytu/ChessInstruct`**, then **merged to FP16**.
|
37 |
+
- Load directly with `transformers` and chat using the **Gemma-3 chat template**.
|
38 |
+
|
39 |
+
---
|
40 |
+
|
41 |
+
## ✨ Intended Use
|
42 |
+
|
43 |
+
- **Direct use:** Explain chess rules, beginner opening principles, basic tactics, and high-level strategy in **plain text**.
|
44 |
+
- **Downstream use:** As a small assistant embedded in notebooks, tutorials, or beginner-level chess learning tools.
|
45 |
+
|
46 |
+
**Out-of-scope:** Engine-level move search, advanced calculation, or authoritative evaluations of complex positions. For serious analysis, use a dedicated chess engine (e.g., Stockfish) and verify claims.
|
47 |
+
|
48 |
+
---
|
49 |
+
|
50 |
+
## 🔧 How to Use
|
51 |
+
|
52 |
+
> The model expects **Gemma-3 chat formatting**. Use `apply_chat_template` before generation.
|
53 |
+
|
54 |
+
### Minimal example (Transformers)
|
55 |
+
```python
|
56 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
57 |
+
|
58 |
+
REPO = "codertrish/Finetuned-gemma3-270m-chess-merged"
|
59 |
+
|
60 |
+
tok = AutoTokenizer.from_pretrained(REPO)
|
61 |
+
model = AutoModelForCausalLM.from_pretrained(REPO, torch_dtype="bfloat16", device_map="auto")
|
62 |
+
|
63 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tok, return_full_text=False)
|
64 |
+
|
65 |
+
def chat(messages, **gen_kwargs):
|
66 |
+
prompt = tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
67 |
+
eot_id = tok.convert_tokens_to_ids("<end_of_turn>")
|
68 |
+
out = pipe(
|
69 |
+
prompt,
|
70 |
+
eos_token_id=eot_id,
|
71 |
+
max_new_tokens=200,
|
72 |
+
do_sample=False, # deterministic; set True for sampling
|
73 |
+
**gen_kwargs,
|
74 |
+
)[0]["generated_text"]
|
75 |
+
return out.strip()
|
76 |
+
|
77 |
+
messages = [
|
78 |
+
{"role":"system","content":"You are a helpful chess coach. Answer in plain text, 3 concise bullets."},
|
79 |
+
{"role":"user","content":"What are the main opening principles?"},
|
80 |
+
]
|
81 |
+
print(chat(messages))
|