--- library_name: peft license: mit base_model: microsoft/Phi-3.5-mini-instruct tags: - axolotl - generated_from_trainer model-index: - name: curator_math_phase1_sn_ensemble7_90325 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.0`

# Collinear Curator 1: This is an open-source fine-tuned reasoning adapter of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct), transformed into a math reasoning model using data curated from [collinear-ai/R1-Distill-SFT-Curated](https://huggingface.co/datasets/collinear-ai/R1-Distill-SFT-Curated). It achieves the following results on the evaluation set: - Loss: 0.3203 ## Model description This model is a LoRA adaptor and for best results merge it with base model [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) before use. ## Training and evaluation data - Training data: [collinear-ai/R1-Distill-SFT-Curated](https://huggingface.co/datasets/collinear-ai/R1-Distill-SFT-Curated) - Evaluation data: [HuggingFaceH4/MATH-500](https://huggingface.co/datasets/HuggingFaceH4/MATH-500) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 0.6714 | | 0.337 | 0.3335 | 1243 | 0.3361 | | 0.3248 | 0.6669 | 2486 | 0.3203 | ### Evaluation Results on Math500 The following figure shows the accuracy and the speedup of Collinear Curators C1 and C2 when compared to training on unfiltered dataset. ![Math Reasoning Evaluation](https://huggingface.co/collinear-ai/math_reasoning_phi_c1/raw/main/math500_eval_c1_c2.png) ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.3