--- library_name: peft license: mit base_model: microsoft/Phi-3.5-mini-instruct tags: - axolotl - generated_from_trainer model-index: - name: sn_math_curator_on_ensemble_8 results: [] --- This is an open-source fine-tuned reasoning adapter of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct), transformed into a math reasoning model using data curated from [collinear-ai/R1-Distill-SFT-Curated](https://huggingface.co/datasets/collinear-ai/R1-Distill-SFT-Curated). [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl version axolotl version: `0.5.0`

## Intended uses & limitations Math-Reasoning ## Training and evaluation data Training data curated from [collinear-ai/R1-Distill-SFT-Curated](https://huggingface.co/datasets/collinear-ai/R1-Distill-SFT-Curated) Evaluation data: [HuggingFaceH4/MATH-500](https://huggingface.co/datasets/HuggingFaceH4/MATH-500) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 160 - total_eval_batch_size: 80 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 0.6646 | | 0.3174 | 0.3335 | 1247 | 0.3329 | | 0.307 | 0.6670 | 2494 | 0.3169 | ### Evaluation on Math500 ![Math Reasoning Evaluation](https://huggingface.co/collinear-ai/math_reasoning_phi_c2/raw/main/math500_eval_c1_c2.png) ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.3