noriyukipy
commited on
Commit
•
5d38c0a
1
Parent(s):
0bf7a3e
Update model card
Browse files
README.md
CHANGED
@@ -20,9 +20,7 @@ This repository contains a Sentence BERT base model for Japanese.
|
|
20 |
|
21 |
## Pretrained model
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
This model is trained on Japanese Wikipedia data and relased under [Creative Commons Attribution-ShareAlike 3.0](https://creativecommons.org/licenses/by-sa/3.0/) .
|
26 |
|
27 |
## Training data
|
28 |
|
@@ -36,11 +34,12 @@ Original training dataset is splitted into train/valid dataset. Finally, follwoi
|
|
36 |
|
37 |
## Model description
|
38 |
|
39 |
-
`SentenceTransformer` model from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)
|
40 |
The model detail is as below.
|
41 |
|
42 |
```py
|
43 |
-
>>> sentence_transformers
|
|
|
44 |
SentenceTransformer(
|
45 |
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
46 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
|
|
20 |
|
21 |
## Pretrained model
|
22 |
|
23 |
+
This model utilizes a Japanese BERT model [colorfulscoop/bert-base-ja](https://huggingface.co/colorfulscoop/bert-base-ja) v1.0 released under [Creative Commons Attribution-ShareAlike 3.0](https://creativecommons.org/licenses/by-sa/3.0/) as a pretrained model.
|
|
|
|
|
24 |
|
25 |
## Training data
|
26 |
|
|
|
34 |
|
35 |
## Model description
|
36 |
|
37 |
+
This model utilizes `SentenceTransformer` model from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers) .
|
38 |
The model detail is as below.
|
39 |
|
40 |
```py
|
41 |
+
>>> from sentence_transformers import SentenceTransformer
|
42 |
+
>>> SentenceTransformer("colorfulscoop/sbert-base-ja")
|
43 |
SentenceTransformer(
|
44 |
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
45 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|