Create convert.py
Browse files- convert.py +47 -0
convert.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import safetensors.torch
|
| 3 |
+
from transformers import T5Tokenizer, T5EncoderModel
|
| 4 |
+
|
| 5 |
+
#https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.2/blob/main/t2i/model/pytorch_model_ema.pt
|
| 6 |
+
input_diffusion = "pytorch_model_ema.pt"
|
| 7 |
+
|
| 8 |
+
#https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.2/tree/main/t2i/clip_text_encoder
|
| 9 |
+
input_bert = "./clip_text_encoder/pytorch_model.bin"
|
| 10 |
+
|
| 11 |
+
#https://huggingface.co/stabilityai/sdxl-vae/blob/main/sdxl_vae.safetensors
|
| 12 |
+
# or
|
| 13 |
+
#https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/blob/main/sdxl_vae.safetensors
|
| 14 |
+
input_vae = "sdxl_vae.safetensors"
|
| 15 |
+
|
| 16 |
+
output = "hunyuan_dit_1.2.safetensors"
|
| 17 |
+
|
| 18 |
+
bert_sd = torch.load(input_bert, weights_only=True)
|
| 19 |
+
|
| 20 |
+
mt5 = T5EncoderModel.from_pretrained("google/mt5-xl")
|
| 21 |
+
tokenizer = T5Tokenizer.from_pretrained("google/mt5-xl")
|
| 22 |
+
|
| 23 |
+
sp_model = torch.ByteTensor(list(tokenizer.sp_model.serialized_model_proto()))
|
| 24 |
+
t5_sd = mt5.state_dict()
|
| 25 |
+
|
| 26 |
+
out_sd = {}
|
| 27 |
+
|
| 28 |
+
out_sd["text_encoders.mt5xl.spiece_model"] = sp_model
|
| 29 |
+
|
| 30 |
+
for k in t5_sd:
|
| 31 |
+
out_sd["text_encoders.mt5xl.transformer.{}".format(k)] = t5_sd[k].half()
|
| 32 |
+
|
| 33 |
+
for k in bert_sd:
|
| 34 |
+
if not k.startswith("visual."):
|
| 35 |
+
out_sd["text_encoders.hydit_clip.transformer.{}".format(k)] = bert_sd[k].half()
|
| 36 |
+
|
| 37 |
+
hydit = torch.load(input_diffusion, weights_only=True)
|
| 38 |
+
for k in hydit:
|
| 39 |
+
out_sd["model.{}".format(k)] = hydit[k].half()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
vae_sd = safetensors.torch.load_file(input_vae)
|
| 43 |
+
|
| 44 |
+
for k in vae_sd:
|
| 45 |
+
out_sd["vae.{}".format(k)] = vae_sd[k].half()
|
| 46 |
+
|
| 47 |
+
safetensors.torch.save_file(out_sd, output)
|