commanderstrife commited on
Commit
dd74815
·
1 Parent(s): 17b512d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - pv_dataset
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: PV-Bio_clinicalBERT-superset
13
+ results:
14
+ - task:
15
+ name: Token Classification
16
+ type: token-classification
17
+ dataset:
18
+ name: pv_dataset
19
+ type: pv_dataset
20
+ config: PVDatasetCorpus
21
+ split: train
22
+ args: PVDatasetCorpus
23
+ metrics:
24
+ - name: Precision
25
+ type: precision
26
+ value: 0.7055946686730801
27
+ - name: Recall
28
+ type: recall
29
+ value: 0.7473672226333467
30
+ - name: F1
31
+ type: f1
32
+ value: 0.7258804666334938
33
+ - name: Accuracy
34
+ type: accuracy
35
+ value: 0.9656573815513143
36
+ ---
37
+
38
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
39
+ should probably proofread and complete it, then remove this comment. -->
40
+
41
+ # PV-Bio_clinicalBERT-superset
42
+
43
+ This model is a fine-tuned version of [giacomomiolo/electramed_base_scivocab_1M](https://huggingface.co/giacomomiolo/electramed_base_scivocab_1M) on the pv_dataset dataset.
44
+ It achieves the following results on the evaluation set:
45
+ - Loss: 0.2082
46
+ - Precision: 0.7056
47
+ - Recall: 0.7474
48
+ - F1: 0.7259
49
+ - Accuracy: 0.9657
50
+
51
+ ## Model description
52
+
53
+ More information needed
54
+
55
+ ## Intended uses & limitations
56
+
57
+ More information needed
58
+
59
+ ## Training and evaluation data
60
+
61
+ More information needed
62
+
63
+ ## Training procedure
64
+
65
+ ### Training hyperparameters
66
+
67
+ The following hyperparameters were used during training:
68
+ - learning_rate: 2e-05
69
+ - train_batch_size: 16
70
+ - eval_batch_size: 16
71
+ - seed: 42
72
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
73
+ - lr_scheduler_type: linear
74
+ - num_epochs: 10
75
+
76
+ ### Training results
77
+
78
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
79
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
80
+ | 0.063 | 1.0 | 1813 | 0.1061 | 0.6453 | 0.7306 | 0.6853 | 0.9623 |
81
+ | 0.0086 | 2.0 | 3626 | 0.1068 | 0.6620 | 0.7516 | 0.7040 | 0.9647 |
82
+ | 0.0089 | 3.0 | 5439 | 0.1265 | 0.7026 | 0.7300 | 0.7160 | 0.9657 |
83
+ | 0.004 | 4.0 | 7252 | 0.1369 | 0.6820 | 0.7601 | 0.7189 | 0.9638 |
84
+ | 0.0004 | 5.0 | 9065 | 0.1573 | 0.6937 | 0.7602 | 0.7254 | 0.9656 |
85
+ | 0.0184 | 6.0 | 10878 | 0.1707 | 0.7078 | 0.7475 | 0.7271 | 0.9662 |
86
+ | 0.0009 | 7.0 | 12691 | 0.1787 | 0.7116 | 0.7398 | 0.7254 | 0.9662 |
87
+ | 0.0006 | 8.0 | 14504 | 0.1874 | 0.6979 | 0.7576 | 0.7265 | 0.9655 |
88
+ | 0.0008 | 9.0 | 16317 | 0.1970 | 0.7083 | 0.7475 | 0.7273 | 0.9660 |
89
+ | 0.0003 | 10.0 | 18130 | 0.2082 | 0.7056 | 0.7474 | 0.7259 | 0.9657 |
90
+
91
+
92
+ ### Framework versions
93
+
94
+ - Transformers 4.21.0
95
+ - Pytorch 1.12.0+cu113
96
+ - Datasets 2.4.0
97
+ - Tokenizers 0.12.1