Commit
·
dd74815
1
Parent(s):
17b512d
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- pv_dataset
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: PV-Bio_clinicalBERT-superset
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Token Classification
|
16 |
+
type: token-classification
|
17 |
+
dataset:
|
18 |
+
name: pv_dataset
|
19 |
+
type: pv_dataset
|
20 |
+
config: PVDatasetCorpus
|
21 |
+
split: train
|
22 |
+
args: PVDatasetCorpus
|
23 |
+
metrics:
|
24 |
+
- name: Precision
|
25 |
+
type: precision
|
26 |
+
value: 0.7055946686730801
|
27 |
+
- name: Recall
|
28 |
+
type: recall
|
29 |
+
value: 0.7473672226333467
|
30 |
+
- name: F1
|
31 |
+
type: f1
|
32 |
+
value: 0.7258804666334938
|
33 |
+
- name: Accuracy
|
34 |
+
type: accuracy
|
35 |
+
value: 0.9656573815513143
|
36 |
+
---
|
37 |
+
|
38 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
39 |
+
should probably proofread and complete it, then remove this comment. -->
|
40 |
+
|
41 |
+
# PV-Bio_clinicalBERT-superset
|
42 |
+
|
43 |
+
This model is a fine-tuned version of [giacomomiolo/electramed_base_scivocab_1M](https://huggingface.co/giacomomiolo/electramed_base_scivocab_1M) on the pv_dataset dataset.
|
44 |
+
It achieves the following results on the evaluation set:
|
45 |
+
- Loss: 0.2082
|
46 |
+
- Precision: 0.7056
|
47 |
+
- Recall: 0.7474
|
48 |
+
- F1: 0.7259
|
49 |
+
- Accuracy: 0.9657
|
50 |
+
|
51 |
+
## Model description
|
52 |
+
|
53 |
+
More information needed
|
54 |
+
|
55 |
+
## Intended uses & limitations
|
56 |
+
|
57 |
+
More information needed
|
58 |
+
|
59 |
+
## Training and evaluation data
|
60 |
+
|
61 |
+
More information needed
|
62 |
+
|
63 |
+
## Training procedure
|
64 |
+
|
65 |
+
### Training hyperparameters
|
66 |
+
|
67 |
+
The following hyperparameters were used during training:
|
68 |
+
- learning_rate: 2e-05
|
69 |
+
- train_batch_size: 16
|
70 |
+
- eval_batch_size: 16
|
71 |
+
- seed: 42
|
72 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
73 |
+
- lr_scheduler_type: linear
|
74 |
+
- num_epochs: 10
|
75 |
+
|
76 |
+
### Training results
|
77 |
+
|
78 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
79 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
80 |
+
| 0.063 | 1.0 | 1813 | 0.1061 | 0.6453 | 0.7306 | 0.6853 | 0.9623 |
|
81 |
+
| 0.0086 | 2.0 | 3626 | 0.1068 | 0.6620 | 0.7516 | 0.7040 | 0.9647 |
|
82 |
+
| 0.0089 | 3.0 | 5439 | 0.1265 | 0.7026 | 0.7300 | 0.7160 | 0.9657 |
|
83 |
+
| 0.004 | 4.0 | 7252 | 0.1369 | 0.6820 | 0.7601 | 0.7189 | 0.9638 |
|
84 |
+
| 0.0004 | 5.0 | 9065 | 0.1573 | 0.6937 | 0.7602 | 0.7254 | 0.9656 |
|
85 |
+
| 0.0184 | 6.0 | 10878 | 0.1707 | 0.7078 | 0.7475 | 0.7271 | 0.9662 |
|
86 |
+
| 0.0009 | 7.0 | 12691 | 0.1787 | 0.7116 | 0.7398 | 0.7254 | 0.9662 |
|
87 |
+
| 0.0006 | 8.0 | 14504 | 0.1874 | 0.6979 | 0.7576 | 0.7265 | 0.9655 |
|
88 |
+
| 0.0008 | 9.0 | 16317 | 0.1970 | 0.7083 | 0.7475 | 0.7273 | 0.9660 |
|
89 |
+
| 0.0003 | 10.0 | 18130 | 0.2082 | 0.7056 | 0.7474 | 0.7259 | 0.9657 |
|
90 |
+
|
91 |
+
|
92 |
+
### Framework versions
|
93 |
+
|
94 |
+
- Transformers 4.21.0
|
95 |
+
- Pytorch 1.12.0+cu113
|
96 |
+
- Datasets 2.4.0
|
97 |
+
- Tokenizers 0.12.1
|