--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: hw2advanced results: [] --- # hw2advanced This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2408 - Precision: {'precision': 0.9067133278302073} - Recall: {'recall': 0.903472079391197} - F1: {'f1': 0.9050586148832505} - Accuracy: {'accuracy': 0.9160687311178247} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------------------------:|:------------------------------:|:--------------------------:|:--------------------------------:| | 0.4744 | 1.0 | 1324 | 0.3413 | {'precision': 0.8554480519619763} | {'recall': 0.8395979020979021} | {'f1': 0.8466159268992823} | {'accuracy': 0.866786253776435} | | 0.3566 | 2.0 | 2648 | 0.2408 | {'precision': 0.9067133278302073} | {'recall': 0.903472079391197} | {'f1': 0.9050586148832505} | {'accuracy': 0.9160687311178247} | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2