import { assert, it, describe } from "vitest"; import { parseSafetensorsMetadata, parseSafetensorsShardFilename } from "./parse-safetensors-metadata"; import { sum } from "../utils/sum"; describe("parseSafetensorsMetadata", () => { it("fetch info for single-file (with the default conventional filename)", async () => { const parse = await parseSafetensorsMetadata({ repo: "bert-base-uncased", computeParametersCount: true, revision: "86b5e0934494bd15c9632b12f734a8a67f723594", }); assert(!parse.sharded); assert.deepStrictEqual(parse.header.__metadata__, { format: "pt" }); // Example of one tensor (the header contains many tensors) assert.deepStrictEqual(parse.header["bert.embeddings.LayerNorm.beta"], { dtype: "F32", shape: [768], data_offsets: [0, 3072], }); assert.deepStrictEqual(parse.parameterCount, { F32: 110_106_428 }); assert.deepStrictEqual(sum(Object.values(parse.parameterCount)), 110_106_428); // total params = 110m }); it("fetch info for sharded (with the default conventional filename)", async () => { const parse = await parseSafetensorsMetadata({ repo: "bigscience/bloom", computeParametersCount: true, revision: "053d9cd9fbe814e091294f67fcfedb3397b954bb", }); assert(parse.sharded); assert.strictEqual(Object.keys(parse.headers).length, 72); // This model has 72 shards! // Example of one tensor inside one file assert.deepStrictEqual(parse.headers["model_00012-of-00072.safetensors"]["h.10.input_layernorm.weight"], { dtype: "BF16", shape: [14336], data_offsets: [3288649728, 3288678400], }); assert.deepStrictEqual(parse.parameterCount, { BF16: 176_247_271_424 }); assert.deepStrictEqual(sum(Object.values(parse.parameterCount)), 176_247_271_424); // total params = 176B }); it("fetch info for single-file with multiple dtypes", async () => { const parse = await parseSafetensorsMetadata({ repo: "roberta-base", computeParametersCount: true, revision: "e2da8e2f811d1448a5b465c236feacd80ffbac7b", }); assert(!parse.sharded); assert.deepStrictEqual(parse.parameterCount, { F32: 124_697_433, I64: 514 }); assert.deepStrictEqual(sum(Object.values(parse.parameterCount)), 124_697_947); // total params = 124m }); it("fetch info for single-file with file path", async () => { const parse = await parseSafetensorsMetadata({ repo: "CompVis/stable-diffusion-v1-4", computeParametersCount: true, path: "unet/diffusion_pytorch_model.safetensors", revision: "133a221b8aa7292a167afc5127cb63fb5005638b", }); assert(!parse.sharded); assert.deepStrictEqual(parse.header.__metadata__, { format: "pt" }); // Example of one tensor (the header contains many tensors) assert.deepStrictEqual(parse.header["up_blocks.3.resnets.0.norm2.bias"], { dtype: "F32", shape: [320], data_offsets: [3_409_382_416, 3_409_383_696], }); assert.deepStrictEqual(parse.parameterCount, { F32: 859_520_964 }); assert.deepStrictEqual(sum(Object.values(parse.parameterCount)), 859_520_964); }); it("fetch info for sharded (with the default conventional filename) with file path", async () => { const parse = await parseSafetensorsMetadata({ repo: "Alignment-Lab-AI/ALAI-gemma-7b", computeParametersCount: true, path: "7b/1/model.safetensors.index.json", revision: "37e307261fe97bbf8b2463d61dbdd1a10daa264c", }); assert(parse.sharded); assert.strictEqual(Object.keys(parse.headers).length, 4); assert.deepStrictEqual(parse.headers["model-00004-of-00004.safetensors"]["model.layers.24.mlp.up_proj.weight"], { dtype: "BF16", shape: [24576, 3072], data_offsets: [301996032, 452990976], }); assert.deepStrictEqual(parse.parameterCount, { BF16: 8_537_680_896 }); assert.deepStrictEqual(sum(Object.values(parse.parameterCount)), 8_537_680_896); }); it("should detect sharded safetensors filename", async () => { const safetensorsFilename = "model_00005-of-00072.safetensors"; // https://huggingface.co/bigscience/bloom/blob/4d8e28c67403974b0f17a4ac5992e4ba0b0dbb6f/model_00005-of-00072.safetensors const safetensorsShardFileInfo = parseSafetensorsShardFilename(safetensorsFilename); assert.strictEqual(safetensorsShardFileInfo?.prefix, "model_"); assert.strictEqual(safetensorsShardFileInfo?.basePrefix, "model"); assert.strictEqual(safetensorsShardFileInfo?.shard, "00005"); assert.strictEqual(safetensorsShardFileInfo?.total, "00072"); }); });