Upload model
Browse files- config.json +0 -1
- configuration_basnet.py +1 -4
- modeling_basnet.py +47 -21
config.json
CHANGED
|
@@ -9,7 +9,6 @@
|
|
| 9 |
"kernel_size": 3,
|
| 10 |
"model_type": "basnet",
|
| 11 |
"n_channels": 3,
|
| 12 |
-
"resnet_model": "microsoft/resnet-34",
|
| 13 |
"torch_dtype": "float32",
|
| 14 |
"transformers_version": "4.42.4"
|
| 15 |
}
|
|
|
|
| 9 |
"kernel_size": 3,
|
| 10 |
"model_type": "basnet",
|
| 11 |
"n_channels": 3,
|
|
|
|
| 12 |
"torch_dtype": "float32",
|
| 13 |
"transformers_version": "4.42.4"
|
| 14 |
}
|
configuration_basnet.py
CHANGED
|
@@ -6,13 +6,10 @@ class BASNetConfig(PretrainedConfig):
|
|
| 6 |
|
| 7 |
def __init__(
|
| 8 |
self,
|
| 9 |
-
resnet_model: str = "microsoft/resnet-34",
|
| 10 |
n_channels: int = 3,
|
| 11 |
kernel_size: int = 3,
|
| 12 |
**kwargs,
|
| 13 |
) -> None:
|
| 14 |
super().__init__(**kwargs)
|
| 15 |
-
self.resnet_model = resnet_model
|
| 16 |
self.n_channels = n_channels
|
| 17 |
-
|
| 18 |
-
self.kernel_size = 3
|
|
|
|
| 6 |
|
| 7 |
def __init__(
|
| 8 |
self,
|
|
|
|
| 9 |
n_channels: int = 3,
|
| 10 |
kernel_size: int = 3,
|
| 11 |
**kwargs,
|
| 12 |
) -> None:
|
| 13 |
super().__init__(**kwargs)
|
|
|
|
| 14 |
self.n_channels = n_channels
|
| 15 |
+
self.kernel_size = kernel_size
|
|
|
modeling_basnet.py
CHANGED
|
@@ -1,16 +1,30 @@
|
|
| 1 |
import logging
|
| 2 |
-
from
|
|
|
|
| 3 |
|
| 4 |
import torch
|
| 5 |
import torch.nn as nn
|
| 6 |
import torchvision
|
| 7 |
from transformers.modeling_utils import PreTrainedModel
|
|
|
|
| 8 |
|
| 9 |
from .configuration_basnet import BASNetConfig
|
| 10 |
|
| 11 |
logger = logging.getLogger(__name__)
|
| 12 |
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
class RefUnet(nn.Module):
|
| 15 |
def __init__(self, in_ch: int, inc_ch: int) -> None:
|
| 16 |
super().__init__()
|
|
@@ -352,17 +366,8 @@ class BASNetModel(PreTrainedModel):
|
|
| 352 |
self.post_init()
|
| 353 |
|
| 354 |
def forward(
|
| 355 |
-
self, pixel_values: torch.Tensor
|
| 356 |
-
) -> Tuple
|
| 357 |
-
torch.Tensor,
|
| 358 |
-
torch.Tensor,
|
| 359 |
-
torch.Tensor,
|
| 360 |
-
torch.Tensor,
|
| 361 |
-
torch.Tensor,
|
| 362 |
-
torch.Tensor,
|
| 363 |
-
torch.Tensor,
|
| 364 |
-
torch.Tensor,
|
| 365 |
-
]:
|
| 366 |
hx = pixel_values
|
| 367 |
|
| 368 |
## -------------Encoder-------------
|
|
@@ -452,15 +457,36 @@ class BASNetModel(PreTrainedModel):
|
|
| 452 |
## -------------Refine Module-------------
|
| 453 |
dout = self.refunet(d1) # 256
|
| 454 |
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 464 |
)
|
| 465 |
|
| 466 |
|
|
|
|
| 1 |
import logging
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from typing import Optional, Tuple, Union
|
| 4 |
|
| 5 |
import torch
|
| 6 |
import torch.nn as nn
|
| 7 |
import torchvision
|
| 8 |
from transformers.modeling_utils import PreTrainedModel
|
| 9 |
+
from transformers.utils import ModelOutput
|
| 10 |
|
| 11 |
from .configuration_basnet import BASNetConfig
|
| 12 |
|
| 13 |
logger = logging.getLogger(__name__)
|
| 14 |
|
| 15 |
|
| 16 |
+
@dataclass
|
| 17 |
+
class BASNetModelOutput(ModelOutput):
|
| 18 |
+
dout: torch.Tensor
|
| 19 |
+
d1: Optional[torch.Tensor] = None
|
| 20 |
+
d2: Optional[torch.Tensor] = None
|
| 21 |
+
d3: Optional[torch.Tensor] = None
|
| 22 |
+
d4: Optional[torch.Tensor] = None
|
| 23 |
+
d5: Optional[torch.Tensor] = None
|
| 24 |
+
d6: Optional[torch.Tensor] = None
|
| 25 |
+
db: Optional[torch.Tensor] = None
|
| 26 |
+
|
| 27 |
+
|
| 28 |
class RefUnet(nn.Module):
|
| 29 |
def __init__(self, in_ch: int, inc_ch: int) -> None:
|
| 30 |
super().__init__()
|
|
|
|
| 366 |
self.post_init()
|
| 367 |
|
| 368 |
def forward(
|
| 369 |
+
self, pixel_values: torch.Tensor, return_dict: Optional[bool] = None
|
| 370 |
+
) -> Union[Tuple, BASNetModelOutput]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
hx = pixel_values
|
| 372 |
|
| 373 |
## -------------Encoder-------------
|
|
|
|
| 457 |
## -------------Refine Module-------------
|
| 458 |
dout = self.refunet(d1) # 256
|
| 459 |
|
| 460 |
+
dout_act = torch.sigmoid(dout)
|
| 461 |
+
d1_act = torch.sigmoid(d1)
|
| 462 |
+
d2_act = torch.sigmoid(d2)
|
| 463 |
+
d3_act = torch.sigmoid(d3)
|
| 464 |
+
d4_act = torch.sigmoid(d4)
|
| 465 |
+
d5_act = torch.sigmoid(d5)
|
| 466 |
+
d6_act = torch.sigmoid(d6)
|
| 467 |
+
db_act = torch.sigmoid(db)
|
| 468 |
+
|
| 469 |
+
if not return_dict:
|
| 470 |
+
return (
|
| 471 |
+
dout_act,
|
| 472 |
+
d1_act,
|
| 473 |
+
d2_act,
|
| 474 |
+
d3_act,
|
| 475 |
+
d4_act,
|
| 476 |
+
d5_act,
|
| 477 |
+
d6_act,
|
| 478 |
+
db_act,
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
return BASNetModelOutput(
|
| 482 |
+
dout=dout_act,
|
| 483 |
+
d1=d1_act,
|
| 484 |
+
d2=d2_act,
|
| 485 |
+
d3=d3_act,
|
| 486 |
+
d4=d4_act,
|
| 487 |
+
d5=d5_act,
|
| 488 |
+
d6=d6_act,
|
| 489 |
+
db=db_act,
|
| 490 |
)
|
| 491 |
|
| 492 |
|