Tom Aarsen commited on
Commit
d327be6
·
1 Parent(s): c4982bc

Revert inadvertent config, tokenizer updates

Browse files

This reverts commit 15192f12d2403ed1fd7c16a8841379096c5d4a9b.

Files changed (3) hide show
  1. README.md +75 -75
  2. config.json +31 -34
  3. special_tokens_map.json +5 -35
README.md CHANGED
@@ -1,75 +1,75 @@
1
- ---
2
- license: apache-2.0
3
- datasets:
4
- - sentence-transformers/msmarco
5
- language:
6
- - en
7
- base_model:
8
- - nreimers/BERT-Tiny_L-2_H-128_A-2
9
- pipeline_tag: text-ranking
10
- library_name: sentence-transformers
11
- tags:
12
- - transformers
13
- ---
14
- # Cross-Encoder for MS Marco
15
-
16
- This model was trained on the [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task.
17
-
18
- The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Retrieve & Re-rank](https://www.sbert.net/examples/applications/retrieve_rerank/README.html) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco)
19
-
20
-
21
- ## Usage with Transformers
22
-
23
- ```python
24
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
25
- import torch
26
-
27
- model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/ms-marco-TinyBERT-L2-v2')
28
- tokenizer = AutoTokenizer.from_pretrained('cross-encoder/ms-marco-TinyBERT-L2-v2')
29
-
30
- features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
31
-
32
- model.eval()
33
- with torch.no_grad():
34
- scores = model(**features).logits
35
- print(scores)
36
- ```
37
-
38
-
39
- ## Usage with SentenceTransformers
40
-
41
- The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this:
42
- ```python
43
- from sentence_transformers import CrossEncoder
44
-
45
- model = CrossEncoder('cross-encoder/ms-marco-TinyBERT-L2-v2', max_length=512)
46
- scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])
47
- ```
48
-
49
-
50
- ## Performance
51
- In the following table, we provide various pre-trained Cross-Encoders together with their performance on the [TREC Deep Learning 2019](https://microsoft.github.io/TREC-2019-Deep-Learning/) and the [MS Marco Passage Reranking](https://github.com/microsoft/MSMARCO-Passage-Ranking/) dataset.
52
-
53
-
54
- | Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec |
55
- | ------------- |:-------------| -----| --- |
56
- | **Version 2 models** | | |
57
- | cross-encoder/ms-marco-TinyBERT-L2-v2 | 69.84 | 32.56 | 9000
58
- | cross-encoder/ms-marco-MiniLM-L2-v2 | 71.01 | 34.85 | 4100
59
- | cross-encoder/ms-marco-MiniLM-L4-v2 | 73.04 | 37.70 | 2500
60
- | cross-encoder/ms-marco-MiniLM-L6-v2 | 74.30 | 39.01 | 1800
61
- | cross-encoder/ms-marco-MiniLM-L12-v2 | 74.31 | 39.02 | 960
62
- | **Version 1 models** | | |
63
- | cross-encoder/ms-marco-TinyBERT-L2 | 67.43 | 30.15 | 9000
64
- | cross-encoder/ms-marco-TinyBERT-L4 | 68.09 | 34.50 | 2900
65
- | cross-encoder/ms-marco-TinyBERT-L6 | 69.57 | 36.13 | 680
66
- | cross-encoder/ms-marco-electra-base | 71.99 | 36.41 | 340
67
- | **Other models** | | |
68
- | nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900
69
- | nboost/pt-bert-base-uncased-msmarco | 70.94 | 34.75 | 340
70
- | nboost/pt-bert-large-msmarco | 73.36 | 36.48 | 100
71
- | Capreolus/electra-base-msmarco | 71.23 | 36.89 | 340
72
- | amberoad/bert-multilingual-passage-reranking-msmarco | 68.40 | 35.54 | 330
73
- | sebastian-hofstaetter/distilbert-cat-margin_mse-T2-msmarco | 72.82 | 37.88 | 720
74
-
75
- Note: Runtime was computed on a V100 GPU.
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - sentence-transformers/msmarco
5
+ language:
6
+ - en
7
+ base_model:
8
+ - nreimers/BERT-Tiny_L-2_H-128_A-2
9
+ pipeline_tag: text-ranking
10
+ library_name: sentence-transformers
11
+ tags:
12
+ - transformers
13
+ ---
14
+ # Cross-Encoder for MS Marco
15
+
16
+ This model was trained on the [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task.
17
+
18
+ The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Retrieve & Re-rank](https://www.sbert.net/examples/applications/retrieve_rerank/README.html) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco)
19
+
20
+
21
+ ## Usage with Transformers
22
+
23
+ ```python
24
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
25
+ import torch
26
+
27
+ model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/ms-marco-TinyBERT-L2-v2')
28
+ tokenizer = AutoTokenizer.from_pretrained('cross-encoder/ms-marco-TinyBERT-L2-v2')
29
+
30
+ features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
31
+
32
+ model.eval()
33
+ with torch.no_grad():
34
+ scores = model(**features).logits
35
+ print(scores)
36
+ ```
37
+
38
+
39
+ ## Usage with SentenceTransformers
40
+
41
+ The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this:
42
+ ```python
43
+ from sentence_transformers import CrossEncoder
44
+
45
+ model = CrossEncoder('cross-encoder/ms-marco-TinyBERT-L2-v2', max_length=512)
46
+ scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])
47
+ ```
48
+
49
+
50
+ ## Performance
51
+ In the following table, we provide various pre-trained Cross-Encoders together with their performance on the [TREC Deep Learning 2019](https://microsoft.github.io/TREC-2019-Deep-Learning/) and the [MS Marco Passage Reranking](https://github.com/microsoft/MSMARCO-Passage-Ranking/) dataset.
52
+
53
+
54
+ | Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec |
55
+ | ------------- |:-------------| -----| --- |
56
+ | **Version 2 models** | | |
57
+ | cross-encoder/ms-marco-TinyBERT-L2-v2 | 69.84 | 32.56 | 9000
58
+ | cross-encoder/ms-marco-MiniLM-L2-v2 | 71.01 | 34.85 | 4100
59
+ | cross-encoder/ms-marco-MiniLM-L4-v2 | 73.04 | 37.70 | 2500
60
+ | cross-encoder/ms-marco-MiniLM-L6-v2 | 74.30 | 39.01 | 1800
61
+ | cross-encoder/ms-marco-MiniLM-L12-v2 | 74.31 | 39.02 | 960
62
+ | **Version 1 models** | | |
63
+ | cross-encoder/ms-marco-TinyBERT-L2 | 67.43 | 30.15 | 9000
64
+ | cross-encoder/ms-marco-TinyBERT-L4 | 68.09 | 34.50 | 2900
65
+ | cross-encoder/ms-marco-TinyBERT-L6 | 69.57 | 36.13 | 680
66
+ | cross-encoder/ms-marco-electra-base | 71.99 | 36.41 | 340
67
+ | **Other models** | | |
68
+ | nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900
69
+ | nboost/pt-bert-base-uncased-msmarco | 70.94 | 34.75 | 340
70
+ | nboost/pt-bert-large-msmarco | 73.36 | 36.48 | 100
71
+ | Capreolus/electra-base-msmarco | 71.23 | 36.89 | 340
72
+ | amberoad/bert-multilingual-passage-reranking-msmarco | 68.40 | 35.54 | 330
73
+ | sebastian-hofstaetter/distilbert-cat-margin_mse-T2-msmarco | 72.82 | 37.88 | 720
74
+
75
+ Note: Runtime was computed on a V100 GPU.
config.json CHANGED
@@ -1,34 +1,31 @@
1
- {
2
- "architectures": [
3
- "BertForSequenceClassification"
4
- ],
5
- "attention_probs_dropout_prob": 0.1,
6
- "classifier_dropout": null,
7
- "gradient_checkpointing": false,
8
- "hidden_act": "gelu",
9
- "hidden_dropout_prob": 0.1,
10
- "hidden_size": 128,
11
- "id2label": {
12
- "0": "LABEL_0"
13
- },
14
- "initializer_range": 0.02,
15
- "intermediate_size": 512,
16
- "label2id": {
17
- "LABEL_0": 0
18
- },
19
- "layer_norm_eps": 1e-12,
20
- "max_position_embeddings": 512,
21
- "model_type": "bert",
22
- "num_attention_heads": 2,
23
- "num_hidden_layers": 2,
24
- "pad_token_id": 0,
25
- "position_embedding_type": "absolute",
26
- "sentence_transformers": {
27
- "activation_fn": "torch.nn.modules.linear.Identity",
28
- "version": "4.1.0.dev0"
29
- },
30
- "transformers_version": "4.52.0.dev0",
31
- "type_vocab_size": 2,
32
- "use_cache": true,
33
- "vocab_size": 30522
34
- }
 
1
+ {
2
+ "_name_or_path": "nreimers/BERT-Tiny_L-2_H-128_A-2",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 128,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 512,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 2,
23
+ "num_hidden_layers": 2,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "transformers_version": "4.4.2",
27
+ "type_vocab_size": 2,
28
+ "use_cache": true,
29
+ "vocab_size": 30522,
30
+ "sbert_ce_default_activation_function": "torch.nn.modules.linear.Identity"
31
+ }
 
 
 
special_tokens_map.json CHANGED
@@ -1,37 +1,7 @@
1
  {
2
- "cls_token": {
3
- "content": "[CLS]",
4
- "lstrip": false,
5
- "normalized": false,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "mask_token": {
10
- "content": "[MASK]",
11
- "lstrip": false,
12
- "normalized": false,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "pad_token": {
17
- "content": "[PAD]",
18
- "lstrip": false,
19
- "normalized": false,
20
- "rstrip": false,
21
- "single_word": false
22
- },
23
- "sep_token": {
24
- "content": "[SEP]",
25
- "lstrip": false,
26
- "normalized": false,
27
- "rstrip": false,
28
- "single_word": false
29
- },
30
- "unk_token": {
31
- "content": "[UNK]",
32
- "lstrip": false,
33
- "normalized": false,
34
- "rstrip": false,
35
- "single_word": false
36
- }
37
  }
 
1
  {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  }