Tom Aarsen
commited on
Commit
·
d327be6
1
Parent(s):
c4982bc
Revert inadvertent config, tokenizer updates
Browse filesThis reverts commit 15192f12d2403ed1fd7c16a8841379096c5d4a9b.
- README.md +75 -75
- config.json +31 -34
- special_tokens_map.json +5 -35
README.md
CHANGED
|
@@ -1,75 +1,75 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
datasets:
|
| 4 |
-
- sentence-transformers/msmarco
|
| 5 |
-
language:
|
| 6 |
-
- en
|
| 7 |
-
base_model:
|
| 8 |
-
- nreimers/BERT-Tiny_L-2_H-128_A-2
|
| 9 |
-
pipeline_tag: text-ranking
|
| 10 |
-
library_name: sentence-transformers
|
| 11 |
-
tags:
|
| 12 |
-
- transformers
|
| 13 |
-
---
|
| 14 |
-
# Cross-Encoder for MS Marco
|
| 15 |
-
|
| 16 |
-
This model was trained on the [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task.
|
| 17 |
-
|
| 18 |
-
The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Retrieve & Re-rank](https://www.sbert.net/examples/applications/retrieve_rerank/README.html) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco)
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
## Usage with Transformers
|
| 22 |
-
|
| 23 |
-
```python
|
| 24 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 25 |
-
import torch
|
| 26 |
-
|
| 27 |
-
model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/ms-marco-TinyBERT-L2-v2')
|
| 28 |
-
tokenizer = AutoTokenizer.from_pretrained('cross-encoder/ms-marco-TinyBERT-L2-v2')
|
| 29 |
-
|
| 30 |
-
features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
|
| 31 |
-
|
| 32 |
-
model.eval()
|
| 33 |
-
with torch.no_grad():
|
| 34 |
-
scores = model(**features).logits
|
| 35 |
-
print(scores)
|
| 36 |
-
```
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
## Usage with SentenceTransformers
|
| 40 |
-
|
| 41 |
-
The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this:
|
| 42 |
-
```python
|
| 43 |
-
from sentence_transformers import CrossEncoder
|
| 44 |
-
|
| 45 |
-
model = CrossEncoder('cross-encoder/ms-marco-TinyBERT-L2-v2', max_length=512)
|
| 46 |
-
scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])
|
| 47 |
-
```
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
## Performance
|
| 51 |
-
In the following table, we provide various pre-trained Cross-Encoders together with their performance on the [TREC Deep Learning 2019](https://microsoft.github.io/TREC-2019-Deep-Learning/) and the [MS Marco Passage Reranking](https://github.com/microsoft/MSMARCO-Passage-Ranking/) dataset.
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
| Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec |
|
| 55 |
-
| ------------- |:-------------| -----| --- |
|
| 56 |
-
| **Version 2 models** | | |
|
| 57 |
-
| cross-encoder/ms-marco-TinyBERT-L2-v2 | 69.84 | 32.56 | 9000
|
| 58 |
-
| cross-encoder/ms-marco-MiniLM-L2-v2 | 71.01 | 34.85 | 4100
|
| 59 |
-
| cross-encoder/ms-marco-MiniLM-L4-v2 | 73.04 | 37.70 | 2500
|
| 60 |
-
| cross-encoder/ms-marco-MiniLM-L6-v2 | 74.30 | 39.01 | 1800
|
| 61 |
-
| cross-encoder/ms-marco-MiniLM-L12-v2 | 74.31 | 39.02 | 960
|
| 62 |
-
| **Version 1 models** | | |
|
| 63 |
-
| cross-encoder/ms-marco-TinyBERT-L2 | 67.43 | 30.15 | 9000
|
| 64 |
-
| cross-encoder/ms-marco-TinyBERT-L4 | 68.09 | 34.50 | 2900
|
| 65 |
-
| cross-encoder/ms-marco-TinyBERT-L6 | 69.57 | 36.13 | 680
|
| 66 |
-
| cross-encoder/ms-marco-electra-base | 71.99 | 36.41 | 340
|
| 67 |
-
| **Other models** | | |
|
| 68 |
-
| nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900
|
| 69 |
-
| nboost/pt-bert-base-uncased-msmarco | 70.94 | 34.75 | 340
|
| 70 |
-
| nboost/pt-bert-large-msmarco | 73.36 | 36.48 | 100
|
| 71 |
-
| Capreolus/electra-base-msmarco | 71.23 | 36.89 | 340
|
| 72 |
-
| amberoad/bert-multilingual-passage-reranking-msmarco | 68.40 | 35.54 | 330
|
| 73 |
-
| sebastian-hofstaetter/distilbert-cat-margin_mse-T2-msmarco | 72.82 | 37.88 | 720
|
| 74 |
-
|
| 75 |
-
Note: Runtime was computed on a V100 GPU.
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- sentence-transformers/msmarco
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
base_model:
|
| 8 |
+
- nreimers/BERT-Tiny_L-2_H-128_A-2
|
| 9 |
+
pipeline_tag: text-ranking
|
| 10 |
+
library_name: sentence-transformers
|
| 11 |
+
tags:
|
| 12 |
+
- transformers
|
| 13 |
+
---
|
| 14 |
+
# Cross-Encoder for MS Marco
|
| 15 |
+
|
| 16 |
+
This model was trained on the [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task.
|
| 17 |
+
|
| 18 |
+
The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Retrieve & Re-rank](https://www.sbert.net/examples/applications/retrieve_rerank/README.html) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
## Usage with Transformers
|
| 22 |
+
|
| 23 |
+
```python
|
| 24 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 25 |
+
import torch
|
| 26 |
+
|
| 27 |
+
model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/ms-marco-TinyBERT-L2-v2')
|
| 28 |
+
tokenizer = AutoTokenizer.from_pretrained('cross-encoder/ms-marco-TinyBERT-L2-v2')
|
| 29 |
+
|
| 30 |
+
features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
|
| 31 |
+
|
| 32 |
+
model.eval()
|
| 33 |
+
with torch.no_grad():
|
| 34 |
+
scores = model(**features).logits
|
| 35 |
+
print(scores)
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
## Usage with SentenceTransformers
|
| 40 |
+
|
| 41 |
+
The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this:
|
| 42 |
+
```python
|
| 43 |
+
from sentence_transformers import CrossEncoder
|
| 44 |
+
|
| 45 |
+
model = CrossEncoder('cross-encoder/ms-marco-TinyBERT-L2-v2', max_length=512)
|
| 46 |
+
scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
## Performance
|
| 51 |
+
In the following table, we provide various pre-trained Cross-Encoders together with their performance on the [TREC Deep Learning 2019](https://microsoft.github.io/TREC-2019-Deep-Learning/) and the [MS Marco Passage Reranking](https://github.com/microsoft/MSMARCO-Passage-Ranking/) dataset.
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
| Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec |
|
| 55 |
+
| ------------- |:-------------| -----| --- |
|
| 56 |
+
| **Version 2 models** | | |
|
| 57 |
+
| cross-encoder/ms-marco-TinyBERT-L2-v2 | 69.84 | 32.56 | 9000
|
| 58 |
+
| cross-encoder/ms-marco-MiniLM-L2-v2 | 71.01 | 34.85 | 4100
|
| 59 |
+
| cross-encoder/ms-marco-MiniLM-L4-v2 | 73.04 | 37.70 | 2500
|
| 60 |
+
| cross-encoder/ms-marco-MiniLM-L6-v2 | 74.30 | 39.01 | 1800
|
| 61 |
+
| cross-encoder/ms-marco-MiniLM-L12-v2 | 74.31 | 39.02 | 960
|
| 62 |
+
| **Version 1 models** | | |
|
| 63 |
+
| cross-encoder/ms-marco-TinyBERT-L2 | 67.43 | 30.15 | 9000
|
| 64 |
+
| cross-encoder/ms-marco-TinyBERT-L4 | 68.09 | 34.50 | 2900
|
| 65 |
+
| cross-encoder/ms-marco-TinyBERT-L6 | 69.57 | 36.13 | 680
|
| 66 |
+
| cross-encoder/ms-marco-electra-base | 71.99 | 36.41 | 340
|
| 67 |
+
| **Other models** | | |
|
| 68 |
+
| nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900
|
| 69 |
+
| nboost/pt-bert-base-uncased-msmarco | 70.94 | 34.75 | 340
|
| 70 |
+
| nboost/pt-bert-large-msmarco | 73.36 | 36.48 | 100
|
| 71 |
+
| Capreolus/electra-base-msmarco | 71.23 | 36.89 | 340
|
| 72 |
+
| amberoad/bert-multilingual-passage-reranking-msmarco | 68.40 | 35.54 | 330
|
| 73 |
+
| sebastian-hofstaetter/distilbert-cat-margin_mse-T2-msmarco | 72.82 | 37.88 | 720
|
| 74 |
+
|
| 75 |
+
Note: Runtime was computed on a V100 GPU.
|
config.json
CHANGED
|
@@ -1,34 +1,31 @@
|
|
| 1 |
-
{
|
| 2 |
-
"
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
"
|
| 7 |
-
"gradient_checkpointing": false,
|
| 8 |
-
"hidden_act": "gelu",
|
| 9 |
-
"hidden_dropout_prob": 0.1,
|
| 10 |
-
"hidden_size": 128,
|
| 11 |
-
"id2label": {
|
| 12 |
-
"0": "LABEL_0"
|
| 13 |
-
},
|
| 14 |
-
"initializer_range": 0.02,
|
| 15 |
-
"intermediate_size": 512,
|
| 16 |
-
"label2id": {
|
| 17 |
-
"LABEL_0": 0
|
| 18 |
-
},
|
| 19 |
-
"layer_norm_eps": 1e-12,
|
| 20 |
-
"max_position_embeddings": 512,
|
| 21 |
-
"model_type": "bert",
|
| 22 |
-
"num_attention_heads": 2,
|
| 23 |
-
"num_hidden_layers": 2,
|
| 24 |
-
"pad_token_id": 0,
|
| 25 |
-
"position_embedding_type": "absolute",
|
| 26 |
-
"
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
"
|
| 31 |
-
|
| 32 |
-
"use_cache": true,
|
| 33 |
-
"vocab_size": 30522
|
| 34 |
-
}
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "nreimers/BERT-Tiny_L-2_H-128_A-2",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertForSequenceClassification"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"gradient_checkpointing": false,
|
| 8 |
+
"hidden_act": "gelu",
|
| 9 |
+
"hidden_dropout_prob": 0.1,
|
| 10 |
+
"hidden_size": 128,
|
| 11 |
+
"id2label": {
|
| 12 |
+
"0": "LABEL_0"
|
| 13 |
+
},
|
| 14 |
+
"initializer_range": 0.02,
|
| 15 |
+
"intermediate_size": 512,
|
| 16 |
+
"label2id": {
|
| 17 |
+
"LABEL_0": 0
|
| 18 |
+
},
|
| 19 |
+
"layer_norm_eps": 1e-12,
|
| 20 |
+
"max_position_embeddings": 512,
|
| 21 |
+
"model_type": "bert",
|
| 22 |
+
"num_attention_heads": 2,
|
| 23 |
+
"num_hidden_layers": 2,
|
| 24 |
+
"pad_token_id": 0,
|
| 25 |
+
"position_embedding_type": "absolute",
|
| 26 |
+
"transformers_version": "4.4.2",
|
| 27 |
+
"type_vocab_size": 2,
|
| 28 |
+
"use_cache": true,
|
| 29 |
+
"vocab_size": 30522,
|
| 30 |
+
"sbert_ce_default_activation_function": "torch.nn.modules.linear.Identity"
|
| 31 |
+
}
|
|
|
|
|
|
|
|
|
special_tokens_map.json
CHANGED
|
@@ -1,37 +1,7 @@
|
|
| 1 |
{
|
| 2 |
-
"cls_token":
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
"single_word": false
|
| 8 |
-
},
|
| 9 |
-
"mask_token": {
|
| 10 |
-
"content": "[MASK]",
|
| 11 |
-
"lstrip": false,
|
| 12 |
-
"normalized": false,
|
| 13 |
-
"rstrip": false,
|
| 14 |
-
"single_word": false
|
| 15 |
-
},
|
| 16 |
-
"pad_token": {
|
| 17 |
-
"content": "[PAD]",
|
| 18 |
-
"lstrip": false,
|
| 19 |
-
"normalized": false,
|
| 20 |
-
"rstrip": false,
|
| 21 |
-
"single_word": false
|
| 22 |
-
},
|
| 23 |
-
"sep_token": {
|
| 24 |
-
"content": "[SEP]",
|
| 25 |
-
"lstrip": false,
|
| 26 |
-
"normalized": false,
|
| 27 |
-
"rstrip": false,
|
| 28 |
-
"single_word": false
|
| 29 |
-
},
|
| 30 |
-
"unk_token": {
|
| 31 |
-
"content": "[UNK]",
|
| 32 |
-
"lstrip": false,
|
| 33 |
-
"normalized": false,
|
| 34 |
-
"rstrip": false,
|
| 35 |
-
"single_word": false
|
| 36 |
-
}
|
| 37 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
}
|