ParaLlama-p-small / modeling_nano.py
crumb's picture
Upload model
cc554fd verified
import math
import os
import random
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import repeat
from torch import nn
from torch.cuda.amp import autocast
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions, QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast, TokenClassifierOutput)
from transformers.modeling_utils import PreTrainedModel, SequenceSummary
from transformers.utils import (ModelOutput, logging)
from transformers.utils.model_parallel_utils import (assert_device_map,
get_device_map)
from .configuration_nano import NanoConfig
from transformers.models.llama.modeling_llama import LlamaRMSNorm, LlamaDynamicNTKScalingRotaryEmbedding, LlamaRotaryEmbedding, LlamaLinearScalingRotaryEmbedding
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class NanoAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.head_dim = config.hidden_size // config.num_attention_heads
assert (
self.head_dim * config.num_attention_heads == config.hidden_size
), "d_model must be divisible by n_head"
self.use_bias = config.use_bias
if not config.combined_qkv or config.kv_hidden_size is not None:
self.query = nn.Linear(
config.hidden_size, config.hidden_size, bias=self.use_bias
)
self.key = nn.Linear(
config.hidden_size
if not config.kv_hidden_size
else config.kv_hidden_size,
config.hidden_size,
bias=self.use_bias,
)
self.value = nn.Linear(
config.hidden_size
if not config.kv_hidden_size
else config.kv_hidden_size,
config.hidden_size,
bias=self.use_bias,
)
else:
self.qkv = nn.Linear(
config.hidden_size, config.hidden_size * 3, bias=self.use_bias
)
self.out = nn.Linear(config.hidden_size, config.hidden_size, bias=self.use_bias)
self._init_rope()
def _init_rope(self):
if self.config.rope_scaling is None:
self.rotary_emb = LlamaRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.config.max_position_embeddings,
base=self.config.rope_theta,
)
else:
scaling_type = self.config.rope_scaling["type"]
scaling_factor = self.config.rope_scaling["factor"]
if scaling_type == "linear":
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.config.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.config.rope_theta,
)
elif scaling_type == "dynamic":
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.config.rope_theta,
)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
def forward(self, x0, x1=None, causal=False, mask=None, position_ids=None, use_cache=True, layer_past=None):
batch_size = x0.size(0)
def split_heads(x):
return x.view(
batch_size, -1, self.config.num_attention_heads, self.head_dim
).transpose(1, 2)
if not self.config.combined_qkv:
q = split_heads(self.query(x0))
k = split_heads(self.key(x1) if x1 is not None else self.key(x0))
v = split_heads(
self.value(x1 if x1 is not None else x0)
)
else:
q, k, v = self.qkv(x0).chunk(3,-1)
q = split_heads(q)
k = split_heads(k)
v = split_heads(v)
if layer_past is not None:
past_key, past_value = layer_past
k = torch.cat((past_key, k), dim=-2)
v = torch.cat((past_value, v), dim=-2)
cos, sin = self.rotary_emb(v, seq_len=v.shape[-2])
if self.config.experimental_full_adaption_rank is not None:
position_ids = position_ids.repeat_interleave(x0.shape[1]//position_ids.shape[-1],dim=1)
q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids)
if use_cache is True:
present = (k,v)
else:
present = None
attn_output = F.scaled_dot_product_attention(
q, k, v, attn_mask=None, dropout_p=0.0, is_causal=causal
)
attn_output = (
attn_output.transpose(1, 2)
.contiguous()
.view(batch_size, -1, self.config.hidden_size)
)
return self.out(attn_output), present
class NanoGLU(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.gate_proj = nn.Linear(
config.hidden_size, config.intermediate_size, bias=False
)
self.up_proj = nn.Linear(
config.hidden_size, config.intermediate_size, bias=False
)
self.down_proj = nn.Linear(
config.intermediate_size, config.hidden_size, bias=False
)
self.act_fn = ACT2FN[config.activation_function]
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class NanoBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.attn = NanoAttention(config)
self.ffn = NanoGLU(config)
ln_class = LlamaRMSNorm if config.layernorm=="llamarmsnorm" else nn.LayerNorm
self.ln1 = ln_class(config.hidden_size, eps=config.layer_norm_epsilon)
self.ln2 = ln_class(config.hidden_size, eps=config.layer_norm_epsilon)
def forward(self, x, mask=None, position_ids=None, use_cache=True, layer_past=None):
if self.config.ffn == "llamalike":
residual = x
x = self.ln1(x)
attn_out, attn_outs = self.attn(x, causal=True, mask=mask, position_ids=position_ids, use_cache=use_cache, layer_past=layer_past)
x = residual + attn_out
residual = x
x = self.ln2(x)
x = self.ffn(x)
x = residual + x
else: # ffn == "parallel"
attn_in = self.ln1(x)
ffn_in = self.ln2(x)
attn_out, attn_outs = self.attn(attn_in, causal=True, mask=mask, position_ids=position_ids, use_cache=use_cache, layer_past=layer_past)
ffn_out = self.ffn(ffn_in)
x = x + attn_out + ffn_out
if not use_cache: attn_outs = None
return (x, attn_outs)
class NanoPreTrainedModel(PreTrainedModel):
config_class = NanoConfig
base_model_prefix = "transformer"
is_parallelizable = False
supports_gradient_checkpointing = True
_no_split_modules = ["NanoBlock"]
_skip_keys_device_placement = "past_key_values"
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, NanoModel):
module.gradient_checkpointing = value
class Split(nn.Module):
def __init__(self, splits):
super().__init__()
self.splits=splits
def forward(self, x):
bs, tokens, _ = x.shape
# print("SPLIT X0 SHAPE", x.shape)
x = x.view(bs, tokens, self.splits, -1)
x = x.permute(0, 1, 2, 3).reshape(bs, tokens * self.splits, -1)
# print("SPLIT X1 SHAPE", x.shape)
return x
class Recombine(nn.Module):
def __init__(self, splits):
super().__init__()
self.splits = splits
def forward(self, x):
bs, _, _ = x.shape
# print("RECOMBINE X SHAPE", x.shape)
tokens = x.shape[1] // self.splits
# print("RECOMBINE TOKENS", tokens, bs)
x = x.view(bs, tokens, -1)
# print("RECOMBINE X1.SHAPE", x.shape)
return x
class Residual(nn.Module):
def __init__(self, module, a=None):
super().__init__()
self.module = module
self.a = nn.Parameter(torch.tensor(a, dtype=torch.bfloat16)) if a is not None else None
def forward(self, x):
return self.module(x) * (self.a if self.a is not None else 1) + x
class LoRA(nn.Module):
def __init__(self, d, r, a=1):
super().__init__()
self.fn_i = nn.Linear(d, r)
self.fn_o = nn.Linear(r, d)
self.a = nn.Parameter(torch.tensor(a, dtype=self.fn_i.weight.dtype))
def forward(self, x):
return self.fn_o(self.fn_i(x)) * self.a + x
def get_delta_w(self):
return torch.mm(self.fn_o.weight, self.fn_i.weight) * self.a
class NanoModel(NanoPreTrainedModel):
def __init__(self, config):
super().__init__(config)
ln_class = LlamaRMSNorm if config.layernorm=="llamarmsnorm" else nn.LayerNorm
if config.experimental_full_adaption_rank is None:
if config.expanded_wte_size is not None:
self.wte = nn.Sequential(
nn.Embedding(config.vocab_size, config.expanded_wte_size),
nn.Linear(config.expanded_wte_size, config.hidden_size),
)
else:
self.wte = nn.Embedding(config.vocab_size, config.hidden_size)
else:
assert config.expanded_wte_size is not None, "experimental full adaptation of token embeddings requires expanded_wte_size to be set"
# self.wte = nn.Sequential(
# nn.Embedding(config.vocab_size, config.expanded_wte_size),
# LoRA(config.expanded_wte_size, config.experimental_full_adaption_rank),
# Split(config.expanded_wte_size//config.hidden_size)
# )
self.d_0 = config.expanded_wte_size if (config.full_adaptation_has_pre_proj == False) else config.pre_proj_dim
# print("d_0", d_0)
self.wte = nn.Sequential(
nn.Embedding(config.vocab_size, config.expanded_wte_size),
(
nn.Linear(config.expanded_wte_size, config.pre_proj_dim) if config.full_adaptation_has_pre_proj else nn.Identity()
),
(
LoRA(self.d_0, config.experimental_full_adaption_rank)
if config.full_adaptation_type == "lora" else
nn.Linear(self.d_0, self.d_0)
if config.full_adaptation_type == "linear" else
Residual(
nn.Linear(self.d_0, self.d_0)
)
if config.full_adaptation_type == "linear-r" else
Residual(
nn.Linear(self.d_0, self.d_0), 1
)
if config.full_adaptation_type == "linear-ra" else
nn.Identity()
),
Split(self.d_0//config.hidden_size)
)
self.h = nn.ModuleList(
[NanoBlock(config) for i in range(config.num_hidden_layers)]
)
self.ln_f = ln_class(config.hidden_size, eps=config.layer_norm_epsilon)
self.model_parallel = False
self.device_map = None
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.wte[0] if self.config.expanded_wte_size is not None else self.wte
def set_input_embeddings(self, new_embeddings):
if self.config.expanded_wte_size is not None:
self.wte[0] = new_embeddings
else:
self.wte = new_embeddings
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
# soooo not all of the params are able to be used, since I just copied this framework from modeling_gpt2
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time"
)
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, input_shape[-1])
if position_ids is not None:
position_ids = position_ids.view(-1, input_shape[-1])
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.h))
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
position_ids = torch.arange(
past_length,
input_shape[-1] + past_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
if attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
attention_mask = attention_mask.view(batch_size, -1)
attention_mask = attention_mask[:, None, None, :]
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
if self.config.add_cross_attention and encoder_hidden_states is not None:
(
encoder_batch_size,
encoder_sequence_length,
_,
) = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_attention_mask = None
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
# print("inputs embeds shape", inputs_embeds.shape)
hidden_states = inputs_embeds
if token_type_ids is not None:
token_type_embeds = self.wte(token_type_ids)
hidden_states = hidden_states + token_type_embeds
# output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
output_shape = (-1,) + (hidden_states.shape[1],) + (hidden_states.size(-1),)
# print(output_shape, "output shape")
if self.gradient_checkpointing and self.training:
if use_cache:
# logger.warning_once(
# "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
# )
use_cache = False
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = (
() if output_attentions and self.config.add_cross_attention else None
)
all_hidden_states = () if output_hidden_states else None
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
if self.model_parallel:
torch.cuda.set_device(hidden_states.device)
if layer_past is not None:
layer_past = tuple(
past_state.to(hidden_states.device)
for past_state in layer_past
)
if attention_mask is not None:
attention_mask = attention_mask.to(hidden_states.device)
if isinstance(head_mask, torch.Tensor):
head_mask = head_mask.to(hidden_states.device)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = block(hidden_states, mask=attention_mask, position_ids=position_ids, use_cache=use_cache, layer_past=layer_past)
hidden_states = outputs[0]
if use_cache == True:
presents = presents + (outputs[1],)
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, None, all_hidden_states, None, None]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=None,
cross_attentions=None,
)
class NanoModelForCausalLM(NanoPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.transformer = NanoModel(config)
if config.experimental_full_adaption_rank is None or config.full_adaptation_type == "no":
if (config.expanded_lm_head_size is not None):
self.lm_head = nn.Sequential(
nn.Linear(
config.hidden_size, config.expanded_lm_head_size, bias=config.lm_head_projection_bias
),
nn.Linear(
config.expanded_lm_head_size, config.vocab_size, bias=config.lm_head_bias
),
)
else:
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
else:
d_0 = config.expanded_lm_head_size if (not config.full_adaptation_has_pre_proj) else config.pre_proj_dim
self.lm_head = nn.Sequential(
Recombine(d_0//config.hidden_size),
nn.Identity() if not config.full_adaptation_has_pre_proj else nn.Linear(d_0, config.expanded_lm_head_size),
(
LoRA(config.expanded_lm_head_size, config.experimental_full_adaption_rank)
if config.full_adaptation_type == "lora" else
nn.Linear(config.expanded_lm_head_size, config.expanded_lm_head_size)
if config.full_adaptation_type == "linear" else
Residual(
nn.Linear(config.expanded_lm_head_size, config.expanded_lm_head_size)
)
if config.full_adaptation_type == "linear-r" else
Residual(
nn.Linear(config.expanded_lm_head_size, config.expanded_lm_head_size), 1
)
if config.full_adaptation_type == "linear-ra" else
nn.Identity()
),
nn.Linear(config.expanded_lm_head_size, config.vocab_size)
)
self.model_parallel = False
self.device_map = None
self.post_init()
def get_output_embeddings(self):
return self.lm_head if (self.config.experimental_full_adaption_rank is None and self.config.expanded_lm_head_size is None) else self.lm_head[-1]
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
):
token_type_ids = kwargs.get("token_type_ids", None)
# only last token for inputs_ids if past is defined in kwargs
if past_key_values:
input_ids = input_ids[:, -1].unsqueeze(-1)
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
else:
position_ids = None
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
)
return model_inputs
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
# print("Hidden states shape", hidden_states.shape)
if self.model_parallel:
torch.cuda.set_device(self.transformer.first_device)
hidden_states = hidden_states.to(self.lm_head.weight.device)
lm_logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(lm_logits.device)
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
)
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
)
@staticmethod
def _reorder_cache(
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
) -> Tuple[Tuple[torch.Tensor]]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
"""
return tuple(
tuple(
past_state.index_select(0, beam_idx.to(past_state.device))
for past_state in layer_past
)
for layer_past in past_key_values
)
class VTMModelForCausalLM(NanoModelForCausalLM):
_tied_weights_keys = ["lm_head.3.weight"]
def __init__(self, config):
super().__init__(config)
class VTMPreProjModelForCausalLM(NanoModelForCausalLM):
_tied_weights_keys = ["lm_head.3.weight"]
def __init__(self, config):
super().__init__(config)
class PlusModelForCausalLM(NanoModelForCausalLM):
_tied_weights_keys = ["lm_head.1.weight"]
def __init__(self, config):
super().__init__(config)