--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-300m tags: - automatic-speech-recognition - libri10h - mms - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-300m-librispeech-test results: [] --- # wav2vec2-300m-librispeech-test This model is a fine-tuned version of [facebook/mms-300m](https://huggingface.co/facebook/mms-300m) on the LIBRI10H - ENG dataset. It achieves the following results on the evaluation set: - Loss: 2.8825 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:---:| | 6.037 | 0.2899 | 100 | 2.9196 | 1.0 | | 2.8559 | 0.5797 | 200 | 2.8880 | 1.0 | | 2.8547 | 0.8696 | 300 | 2.8900 | 1.0 | | 2.8418 | 1.1594 | 400 | 2.9082 | 1.0 | | 2.8436 | 1.4493 | 500 | 2.8775 | 1.0 | | 2.8373 | 1.7391 | 600 | 2.8821 | 1.0 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0