File size: 2,477 Bytes
aeeb873 1161dd3 aeeb873 1161dd3 aeeb873 1161dd3 aeeb873 1161dd3 aeeb873 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- swagen
metrics:
- wer
model-index:
- name: whisper-medium-swagen-combined-10hrs-model
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: swagen
type: swagen
metrics:
- name: Wer
type: wer
value: 0.3075245365321701
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-medium-swagen-combined-10hrs-model
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the swagen dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4674
- Wer: 0.3075
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 2.6418 | 0.2385 | 200 | 0.8312 | 0.4835 |
| 1.9381 | 0.4769 | 400 | 0.6574 | 0.4050 |
| 1.7528 | 0.7154 | 600 | 0.5706 | 0.3545 |
| 1.7421 | 0.9538 | 800 | 0.5140 | 0.3504 |
| 0.9259 | 1.1931 | 1000 | 0.5175 | 0.3262 |
| 0.8254 | 1.4316 | 1200 | 0.4978 | 0.3096 |
| 0.9616 | 1.6700 | 1400 | 0.4755 | 0.2999 |
| 0.7893 | 1.9085 | 1600 | 0.4674 | 0.3075 |
| 0.3547 | 2.1478 | 1800 | 0.4848 | 0.3158 |
| 0.3568 | 2.3863 | 2000 | 0.4913 | 0.2616 |
| 0.3759 | 2.6247 | 2200 | 0.4685 | 0.3104 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|