--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - swagen metrics: - wer model-index: - name: whisper-medium-swagen-combined-10hrs-model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: swagen type: swagen metrics: - name: Wer type: wer value: 0.3075245365321701 --- # whisper-medium-swagen-combined-10hrs-model This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the swagen dataset. It achieves the following results on the evaluation set: - Loss: 0.4674 - Wer: 0.3075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 2.6418 | 0.2385 | 200 | 0.8312 | 0.4835 | | 1.9381 | 0.4769 | 400 | 0.6574 | 0.4050 | | 1.7528 | 0.7154 | 600 | 0.5706 | 0.3545 | | 1.7421 | 0.9538 | 800 | 0.5140 | 0.3504 | | 0.9259 | 1.1931 | 1000 | 0.5175 | 0.3262 | | 0.8254 | 1.4316 | 1200 | 0.4978 | 0.3096 | | 0.9616 | 1.6700 | 1400 | 0.4755 | 0.2999 | | 0.7893 | 1.9085 | 1600 | 0.4674 | 0.3075 | | 0.3547 | 2.1478 | 1800 | 0.4848 | 0.3158 | | 0.3568 | 2.3863 | 2000 | 0.4913 | 0.2616 | | 0.3759 | 2.6247 | 2200 | 0.4685 | 0.3104 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0