--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - swagen metrics: - wer model-index: - name: whisper-medium-swagen-female-model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: swagen type: swagen metrics: - name: Wer type: wer value: 0.33982266769468006 --- # whisper-medium-swagen-female-model This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the swagen dataset. It achieves the following results on the evaluation set: - Loss: 0.5405 - Wer: 0.3398 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 1.4291 | 0.4700 | 200 | 0.8217 | 0.4967 | | 0.9176 | 0.9401 | 400 | 0.6348 | 0.4266 | | 0.5492 | 1.4089 | 600 | 0.5868 | 0.4094 | | 0.6243 | 1.8790 | 800 | 0.5535 | 0.3275 | | 0.2196 | 2.3478 | 1000 | 0.5643 | 0.3577 | | 0.2211 | 2.8179 | 1200 | 0.5405 | 0.3398 | | 0.0999 | 3.2867 | 1400 | 0.5826 | 0.3283 | | 0.1111 | 3.7568 | 1600 | 0.5537 | 0.3277 | | 0.0423 | 4.2256 | 1800 | 0.6012 | 0.3188 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0