csjo24003 commited on
Commit
a865019
·
verified ·
1 Parent(s): 0a3335f

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,497 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:5749
8
+ - loss:CosineSimilarityLoss
9
+ base_model: sentence-transformers/all-mpnet-base-v2
10
+ widget:
11
+ - source_sentence: Young woman in riding gear on top of horse.
12
+ sentences:
13
+ - Italy’s centre-left splinters in presidential vote
14
+ - The woman is riding on the brown horse.
15
+ - Mali's Interim President Sworn Into Office
16
+ - source_sentence: Sony reports record annual loss
17
+ sentences:
18
+ - A woman is playing a flute.
19
+ - A man and a woman kiss.
20
+ - Sony forecasts record annual loss of $6.4bn
21
+ - source_sentence: A clear plastic chair in front of a bookcase.
22
+ sentences:
23
+ - Allen defends self against Farrow's abuse claims
24
+ - Ehud Olmert sentenced to six years in Israel
25
+ - a clear plastic chair in front of book shelves.
26
+ - source_sentence: KLCI Futures traded mixed at mid-day
27
+ sentences:
28
+ - KL shares mixed at mid-day
29
+ - NATO helicopter makes hard landing in E. Afghanistan
30
+ - Sewol ferry crew faces trial
31
+ - source_sentence: We in Britain think differently to Americans.
32
+ sentences:
33
+ - south korea has had a bullet train system since the 1980s.
34
+ - Originally Posted by zaf We in Britain think differently to Americans.
35
+ - Car bombings kill 13 civilians in Iraqi capital
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - pearson_cosine
40
+ - spearman_cosine
41
+ model-index:
42
+ - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
43
+ results:
44
+ - task:
45
+ type: semantic-similarity
46
+ name: Semantic Similarity
47
+ dataset:
48
+ name: Unknown
49
+ type: unknown
50
+ metrics:
51
+ - type: pearson_cosine
52
+ value: 0.9075334661878893
53
+ name: Pearson Cosine
54
+ - type: spearman_cosine
55
+ value: 0.9060484206473507
56
+ name: Spearman Cosine
57
+ - task:
58
+ type: semantic-similarity
59
+ name: Semantic Similarity
60
+ dataset:
61
+ name: sts dev
62
+ type: sts-dev
63
+ metrics:
64
+ - type: pearson_cosine
65
+ value: 0.9075334589342524
66
+ name: Pearson Cosine
67
+ - type: spearman_cosine
68
+ value: 0.9060484206473507
69
+ name: Spearman Cosine
70
+ ---
71
+
72
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
73
+
74
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
75
+
76
+ ## Model Details
77
+
78
+ ### Model Description
79
+ - **Model Type:** Sentence Transformer
80
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
81
+ - **Maximum Sequence Length:** 384 tokens
82
+ - **Output Dimensionality:** 768 dimensions
83
+ - **Similarity Function:** Cosine Similarity
84
+ <!-- - **Training Dataset:** Unknown -->
85
+ <!-- - **Language:** Unknown -->
86
+ <!-- - **License:** Unknown -->
87
+
88
+ ### Model Sources
89
+
90
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
91
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
92
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
93
+
94
+ ### Full Model Architecture
95
+
96
+ ```
97
+ SentenceTransformer(
98
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
99
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
100
+ (2): Normalize()
101
+ )
102
+ ```
103
+
104
+ ## Usage
105
+
106
+ ### Direct Usage (Sentence Transformers)
107
+
108
+ First install the Sentence Transformers library:
109
+
110
+ ```bash
111
+ pip install -U sentence-transformers
112
+ ```
113
+
114
+ Then you can load this model and run inference.
115
+ ```python
116
+ from sentence_transformers import SentenceTransformer
117
+
118
+ # Download from the 🤗 Hub
119
+ model = SentenceTransformer("sentence_transformers_model_id")
120
+ # Run inference
121
+ sentences = [
122
+ 'We in Britain think differently to Americans.',
123
+ 'Originally Posted by zaf We in Britain think differently to Americans.',
124
+ 'south korea has had a bullet train system since the 1980s.',
125
+ ]
126
+ embeddings = model.encode(sentences)
127
+ print(embeddings.shape)
128
+ # [3, 768]
129
+
130
+ # Get the similarity scores for the embeddings
131
+ similarities = model.similarity(embeddings, embeddings)
132
+ print(similarities.shape)
133
+ # [3, 3]
134
+ ```
135
+
136
+ <!--
137
+ ### Direct Usage (Transformers)
138
+
139
+ <details><summary>Click to see the direct usage in Transformers</summary>
140
+
141
+ </details>
142
+ -->
143
+
144
+ <!--
145
+ ### Downstream Usage (Sentence Transformers)
146
+
147
+ You can finetune this model on your own dataset.
148
+
149
+ <details><summary>Click to expand</summary>
150
+
151
+ </details>
152
+ -->
153
+
154
+ <!--
155
+ ### Out-of-Scope Use
156
+
157
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
158
+ -->
159
+
160
+ ## Evaluation
161
+
162
+ ### Metrics
163
+
164
+ #### Semantic Similarity
165
+
166
+ * Datasets: `` and `sts-dev`
167
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
168
+
169
+ | Metric | | sts-dev |
170
+ |:--------------------|:----------|:----------|
171
+ | pearson_cosine | 0.9075 | 0.9075 |
172
+ | **spearman_cosine** | **0.906** | **0.906** |
173
+
174
+ <!--
175
+ ## Bias, Risks and Limitations
176
+
177
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
178
+ -->
179
+
180
+ <!--
181
+ ### Recommendations
182
+
183
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
184
+ -->
185
+
186
+ ## Training Details
187
+
188
+ ### Training Dataset
189
+
190
+ #### Unnamed Dataset
191
+
192
+
193
+ * Size: 5,749 training samples
194
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
195
+ * Approximate statistics based on the first 1000 samples:
196
+ | | sentence_0 | sentence_1 | label |
197
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
198
+ | type | string | string | float |
199
+ | details | <ul><li>min: 6 tokens</li><li>mean: 14.16 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.18 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
200
+ * Samples:
201
+ | sentence_0 | sentence_1 | label |
202
+ |:----------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------|:--------------------------------|
203
+ | <code>US Senate to vote on fiscal cliff deal as deadline nears</code> | <code>Fiscal cliff: House delays vote on fiscal cliff deal - live</code> | <code>0.5599999904632569</code> |
204
+ | <code>This is America, my friends, and it should not happen here," he said to loud applause.</code> | <code>"This is America, my friends, and it should not happen here."</code> | <code>0.65</code> |
205
+ | <code>Books To Help Kids Talk About Boston Marathon News</code> | <code>Report of two explosions at finish line of Boston Marathon</code> | <code>0.1600000023841858</code> |
206
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
207
+ ```json
208
+ {
209
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
210
+ }
211
+ ```
212
+
213
+ ### Training Hyperparameters
214
+ #### Non-Default Hyperparameters
215
+
216
+ - `eval_strategy`: steps
217
+ - `per_device_train_batch_size`: 32
218
+ - `per_device_eval_batch_size`: 32
219
+ - `num_train_epochs`: 10
220
+ - `multi_dataset_batch_sampler`: round_robin
221
+
222
+ #### All Hyperparameters
223
+ <details><summary>Click to expand</summary>
224
+
225
+ - `overwrite_output_dir`: False
226
+ - `do_predict`: False
227
+ - `eval_strategy`: steps
228
+ - `prediction_loss_only`: True
229
+ - `per_device_train_batch_size`: 32
230
+ - `per_device_eval_batch_size`: 32
231
+ - `per_gpu_train_batch_size`: None
232
+ - `per_gpu_eval_batch_size`: None
233
+ - `gradient_accumulation_steps`: 1
234
+ - `eval_accumulation_steps`: None
235
+ - `torch_empty_cache_steps`: None
236
+ - `learning_rate`: 5e-05
237
+ - `weight_decay`: 0.0
238
+ - `adam_beta1`: 0.9
239
+ - `adam_beta2`: 0.999
240
+ - `adam_epsilon`: 1e-08
241
+ - `max_grad_norm`: 1
242
+ - `num_train_epochs`: 10
243
+ - `max_steps`: -1
244
+ - `lr_scheduler_type`: linear
245
+ - `lr_scheduler_kwargs`: {}
246
+ - `warmup_ratio`: 0.0
247
+ - `warmup_steps`: 0
248
+ - `log_level`: passive
249
+ - `log_level_replica`: warning
250
+ - `log_on_each_node`: True
251
+ - `logging_nan_inf_filter`: True
252
+ - `save_safetensors`: True
253
+ - `save_on_each_node`: False
254
+ - `save_only_model`: False
255
+ - `restore_callback_states_from_checkpoint`: False
256
+ - `no_cuda`: False
257
+ - `use_cpu`: False
258
+ - `use_mps_device`: False
259
+ - `seed`: 42
260
+ - `data_seed`: None
261
+ - `jit_mode_eval`: False
262
+ - `use_ipex`: False
263
+ - `bf16`: False
264
+ - `fp16`: False
265
+ - `fp16_opt_level`: O1
266
+ - `half_precision_backend`: auto
267
+ - `bf16_full_eval`: False
268
+ - `fp16_full_eval`: False
269
+ - `tf32`: None
270
+ - `local_rank`: 0
271
+ - `ddp_backend`: None
272
+ - `tpu_num_cores`: None
273
+ - `tpu_metrics_debug`: False
274
+ - `debug`: []
275
+ - `dataloader_drop_last`: False
276
+ - `dataloader_num_workers`: 0
277
+ - `dataloader_prefetch_factor`: None
278
+ - `past_index`: -1
279
+ - `disable_tqdm`: False
280
+ - `remove_unused_columns`: True
281
+ - `label_names`: None
282
+ - `load_best_model_at_end`: False
283
+ - `ignore_data_skip`: False
284
+ - `fsdp`: []
285
+ - `fsdp_min_num_params`: 0
286
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
287
+ - `fsdp_transformer_layer_cls_to_wrap`: None
288
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
289
+ - `deepspeed`: None
290
+ - `label_smoothing_factor`: 0.0
291
+ - `optim`: adamw_torch
292
+ - `optim_args`: None
293
+ - `adafactor`: False
294
+ - `group_by_length`: False
295
+ - `length_column_name`: length
296
+ - `ddp_find_unused_parameters`: None
297
+ - `ddp_bucket_cap_mb`: None
298
+ - `ddp_broadcast_buffers`: False
299
+ - `dataloader_pin_memory`: True
300
+ - `dataloader_persistent_workers`: False
301
+ - `skip_memory_metrics`: True
302
+ - `use_legacy_prediction_loop`: False
303
+ - `push_to_hub`: False
304
+ - `resume_from_checkpoint`: None
305
+ - `hub_model_id`: None
306
+ - `hub_strategy`: every_save
307
+ - `hub_private_repo`: None
308
+ - `hub_always_push`: False
309
+ - `gradient_checkpointing`: False
310
+ - `gradient_checkpointing_kwargs`: None
311
+ - `include_inputs_for_metrics`: False
312
+ - `include_for_metrics`: []
313
+ - `eval_do_concat_batches`: True
314
+ - `fp16_backend`: auto
315
+ - `push_to_hub_model_id`: None
316
+ - `push_to_hub_organization`: None
317
+ - `mp_parameters`:
318
+ - `auto_find_batch_size`: False
319
+ - `full_determinism`: False
320
+ - `torchdynamo`: None
321
+ - `ray_scope`: last
322
+ - `ddp_timeout`: 1800
323
+ - `torch_compile`: False
324
+ - `torch_compile_backend`: None
325
+ - `torch_compile_mode`: None
326
+ - `dispatch_batches`: None
327
+ - `split_batches`: None
328
+ - `include_tokens_per_second`: False
329
+ - `include_num_input_tokens_seen`: False
330
+ - `neftune_noise_alpha`: None
331
+ - `optim_target_modules`: None
332
+ - `batch_eval_metrics`: False
333
+ - `eval_on_start`: False
334
+ - `use_liger_kernel`: False
335
+ - `eval_use_gather_object`: False
336
+ - `average_tokens_across_devices`: False
337
+ - `prompts`: None
338
+ - `batch_sampler`: batch_sampler
339
+ - `multi_dataset_batch_sampler`: round_robin
340
+
341
+ </details>
342
+
343
+ ### Training Logs
344
+ <details><summary>Click to expand</summary>
345
+
346
+ | Epoch | Step | Training Loss | spearman_cosine | sts-dev_spearman_cosine |
347
+ |:------:|:----:|:-------------:|:---------------:|:-----------------------:|
348
+ | 0 | 0 | - | 0.8811 | - |
349
+ | 0.1 | 18 | - | - | 0.8816 |
350
+ | 0.2 | 36 | - | - | 0.8834 |
351
+ | 0.3 | 54 | - | - | 0.8847 |
352
+ | 0.4 | 72 | - | - | 0.8894 |
353
+ | 0.5 | 90 | - | - | 0.8933 |
354
+ | 0.6 | 108 | - | - | 0.8966 |
355
+ | 0.7 | 126 | - | - | 0.9005 |
356
+ | 0.8 | 144 | - | - | 0.9020 |
357
+ | 0.9 | 162 | - | - | 0.9010 |
358
+ | 1.0 | 180 | - | - | 0.9001 |
359
+ | 1.1 | 198 | - | - | 0.9022 |
360
+ | 1.2 | 216 | - | - | 0.9018 |
361
+ | 1.3 | 234 | - | - | 0.9015 |
362
+ | 1.4 | 252 | - | - | 0.9029 |
363
+ | 1.5 | 270 | - | - | 0.9044 |
364
+ | 1.6 | 288 | - | - | 0.9049 |
365
+ | 1.7 | 306 | - | - | 0.9051 |
366
+ | 1.8 | 324 | - | - | 0.9033 |
367
+ | 1.9 | 342 | - | - | 0.9039 |
368
+ | 2.0 | 360 | - | - | 0.9050 |
369
+ | 2.1 | 378 | - | - | 0.9042 |
370
+ | 2.2 | 396 | - | - | 0.9041 |
371
+ | 2.3 | 414 | - | - | 0.9040 |
372
+ | 2.4 | 432 | - | - | 0.9048 |
373
+ | 2.5 | 450 | - | - | 0.9045 |
374
+ | 2.6 | 468 | - | - | 0.9046 |
375
+ | 2.7 | 486 | - | - | 0.9047 |
376
+ | 2.7778 | 500 | 0.0153 | - | - |
377
+ | 2.8 | 504 | - | - | 0.9057 |
378
+ | 2.9 | 522 | - | - | 0.9065 |
379
+ | 3.0 | 540 | - | - | 0.9074 |
380
+ | 3.1 | 558 | - | - | 0.9073 |
381
+ | 3.2 | 576 | - | - | 0.9065 |
382
+ | 3.3 | 594 | - | - | 0.9046 |
383
+ | 3.4 | 612 | - | - | 0.9057 |
384
+ | 3.5 | 630 | - | - | 0.9069 |
385
+ | 3.6 | 648 | - | - | 0.9062 |
386
+ | 3.7 | 666 | - | - | 0.9061 |
387
+ | 3.8 | 684 | - | - | 0.9050 |
388
+ | 3.9 | 702 | - | - | 0.9050 |
389
+ | 4.0 | 720 | - | - | 0.9048 |
390
+ | 4.1 | 738 | - | - | 0.9052 |
391
+ | 4.2 | 756 | - | - | 0.9055 |
392
+ | 4.3 | 774 | - | - | 0.9060 |
393
+ | 4.4 | 792 | - | - | 0.9059 |
394
+ | 4.5 | 810 | - | - | 0.9064 |
395
+ | 4.6 | 828 | - | - | 0.9063 |
396
+ | 4.7 | 846 | - | - | 0.9063 |
397
+ | 4.8 | 864 | - | - | 0.9067 |
398
+ | 4.9 | 882 | - | - | 0.9059 |
399
+ | 5.0 | 900 | - | - | 0.9052 |
400
+ | 5.1 | 918 | - | - | 0.9061 |
401
+ | 5.2 | 936 | - | - | 0.9057 |
402
+ | 5.3 | 954 | - | - | 0.9053 |
403
+ | 5.4 | 972 | - | - | 0.9060 |
404
+ | 5.5 | 990 | - | - | 0.9050 |
405
+ | 5.5556 | 1000 | 0.0051 | - | - |
406
+ | 5.6 | 1008 | - | - | 0.9053 |
407
+ | 5.7 | 1026 | - | - | 0.9052 |
408
+ | 5.8 | 1044 | - | - | 0.9056 |
409
+ | 5.9 | 1062 | - | - | 0.9062 |
410
+ | 6.0 | 1080 | - | - | 0.9056 |
411
+ | 6.1 | 1098 | - | - | 0.9054 |
412
+ | 6.2 | 1116 | - | - | 0.9058 |
413
+ | 6.3 | 1134 | - | - | 0.9058 |
414
+ | 6.4 | 1152 | - | - | 0.9056 |
415
+ | 6.5 | 1170 | - | - | 0.9057 |
416
+ | 6.6 | 1188 | - | - | 0.9055 |
417
+ | 6.7 | 1206 | - | - | 0.9055 |
418
+ | 6.8 | 1224 | - | - | 0.9053 |
419
+ | 6.9 | 1242 | - | - | 0.9053 |
420
+ | 7.0 | 1260 | - | - | 0.9053 |
421
+ | 7.1 | 1278 | - | - | 0.9057 |
422
+ | 7.2 | 1296 | - | - | 0.9055 |
423
+ | 7.3 | 1314 | - | - | 0.9053 |
424
+ | 7.4 | 1332 | - | - | 0.9056 |
425
+ | 7.5 | 1350 | - | - | 0.9059 |
426
+ | 7.6 | 1368 | - | - | 0.9060 |
427
+ | 7.7 | 1386 | - | - | 0.9057 |
428
+ | 7.8 | 1404 | - | - | 0.9058 |
429
+ | 7.9 | 1422 | - | - | 0.9057 |
430
+ | 8.0 | 1440 | - | - | 0.9058 |
431
+ | 8.1 | 1458 | - | - | 0.9059 |
432
+ | 8.2 | 1476 | - | - | 0.9060 |
433
+ | 8.3 | 1494 | - | - | 0.9056 |
434
+ | 8.3333 | 1500 | 0.0031 | - | - |
435
+ | 8.4 | 1512 | - | - | 0.9057 |
436
+ | 8.5 | 1530 | - | - | 0.9060 |
437
+ | 8.6 | 1548 | - | - | 0.9058 |
438
+ | 8.7 | 1566 | - | - | 0.9060 |
439
+ | 8.8 | 1584 | - | - | 0.9062 |
440
+ | 8.9 | 1602 | - | - | 0.9061 |
441
+ | 9.0 | 1620 | - | - | 0.9061 |
442
+ | 9.1 | 1638 | - | - | 0.9061 |
443
+ | 9.2 | 1656 | - | - | 0.9059 |
444
+ | 9.3 | 1674 | - | - | 0.9060 |
445
+ | 9.4 | 1692 | - | - | 0.9061 |
446
+ | 9.5 | 1710 | - | - | 0.9061 |
447
+ | 9.6 | 1728 | - | - | 0.9061 |
448
+ | 9.7 | 1746 | - | - | 0.9060 |
449
+ | 9.8 | 1764 | - | - | 0.9061 |
450
+ | 9.9 | 1782 | - | - | 0.9061 |
451
+ | 10.0 | 1800 | - | 0.9060 | 0.9060 |
452
+
453
+ </details>
454
+
455
+ ### Framework Versions
456
+ - Python: 3.10.12
457
+ - Sentence Transformers: 3.3.1
458
+ - Transformers: 4.47.1
459
+ - PyTorch: 2.5.1+cu121
460
+ - Accelerate: 1.2.1
461
+ - Datasets: 3.2.0
462
+ - Tokenizers: 0.21.0
463
+
464
+ ## Citation
465
+
466
+ ### BibTeX
467
+
468
+ #### Sentence Transformers
469
+ ```bibtex
470
+ @inproceedings{reimers-2019-sentence-bert,
471
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
472
+ author = "Reimers, Nils and Gurevych, Iryna",
473
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
474
+ month = "11",
475
+ year = "2019",
476
+ publisher = "Association for Computational Linguistics",
477
+ url = "https://arxiv.org/abs/1908.10084",
478
+ }
479
+ ```
480
+
481
+ <!--
482
+ ## Glossary
483
+
484
+ *Clearly define terms in order to be accessible across audiences.*
485
+ -->
486
+
487
+ <!--
488
+ ## Model Card Authors
489
+
490
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
491
+ -->
492
+
493
+ <!--
494
+ ## Model Card Contact
495
+
496
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
497
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.47.1",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41245a18c5e2812138da4708271b7fe0903d5b617e9914588dbc5c248aa35d15
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "extra_special_tokens": {},
58
+ "mask_token": "<mask>",
59
+ "max_length": 128,
60
+ "model_max_length": 384,
61
+ "pad_to_multiple_of": null,
62
+ "pad_token": "<pad>",
63
+ "pad_token_type_id": 0,
64
+ "padding_side": "right",
65
+ "sep_token": "</s>",
66
+ "stride": 0,
67
+ "strip_accents": null,
68
+ "tokenize_chinese_chars": true,
69
+ "tokenizer_class": "MPNetTokenizer",
70
+ "truncation_side": "right",
71
+ "truncation_strategy": "longest_first",
72
+ "unk_token": "[UNK]"
73
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff