--- tags: - merge - mergekit - lazymergekit - flemmingmiguel/NeuDist-Ro-7B - Blizado/discolm-mfto-7b-german-v0.1 - ResplendentAI/Flora_DPO_7B base_model: - flemmingmiguel/NeuDist-Ro-7B - Blizado/discolm-mfto-7b-german-v0.1 - ResplendentAI/Flora_DPO_7B license: cc-by-sa-4.0 --- # Spaetzle-v12-7b Spaetzle-v12-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [flemmingmiguel/NeuDist-Ro-7B](https://huggingface.co/flemmingmiguel/NeuDist-Ro-7B) * [Blizado/discolm-mfto-7b-german-v0.1](https://huggingface.co/Blizado/discolm-mfto-7b-german-v0.1) * [ResplendentAI/Flora_DPO_7B](https://huggingface.co/ResplendentAI/Flora_DPO_7B) * on the basis of [mayflowergmbh/Wiedervereinigung-7b-dpo-laser](https://huggingface.co/mayflowergmbh/Wiedervereinigung-7b-dpo-laser) As expected, this is a little bit worse in general English tasks over [cstr/spaetzle-v8-7b](https://huggingface.co/cstr/spaetzle-v8-7b), but a tiny little bit better on German tasks, at least some: e.g. it reaches an EQ-Bench (de) score of 64.81, but only | Metric |Value| |---------------------------------|----:| |Avg. |69.36| |AI2 Reasoning Challenge (25-Shot)|65.96| |HellaSwag (10-Shot) |86.16| |MMLU (5-Shot) |63.48| |TruthfulQA (0-shot) |57.84| |Winogrande (5-shot) |80.03| |GSM8k (5-shot) |62.70| | Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |--------------------------------------------------------------|------:|------:|---------:|-------:|------:| |[Spaetzle-v12-7b](https://huggingface.co/cstr/Spaetzle-v12-7b)| 42.64| 74.3| 58.44| 44.44| 54.95| ### AGIEval | Task |Version| Metric |Value| |Stderr| |------------------------------|------:|--------|----:|---|-----:| |agieval_aqua_rat | 0|acc |24.02|± | 2.69| | | |acc_norm|21.65|± | 2.59| |agieval_logiqa_en | 0|acc |36.10|± | 1.88| | | |acc_norm|37.63|± | 1.90| |agieval_lsat_ar | 0|acc |24.35|± | 2.84| | | |acc_norm|23.04|± | 2.78| |agieval_lsat_lr | 0|acc |48.82|± | 2.22| | | |acc_norm|47.25|± | 2.21| |agieval_lsat_rc | 0|acc |60.59|± | 2.98| | | |acc_norm|57.99|± | 3.01| |agieval_sat_en | 0|acc |76.21|± | 2.97| | | |acc_norm|74.76|± | 3.03| |agieval_sat_en_without_passage| 0|acc |46.60|± | 3.48| | | |acc_norm|45.63|± | 3.48| |agieval_sat_math | 0|acc |37.27|± | 3.27| | | |acc_norm|33.18|± | 3.18| Average: 42.64% ### GPT4All | Task |Version| Metric |Value| |Stderr| |-------------|------:|--------|----:|---|-----:| |arc_challenge| 0|acc |59.13|± | 1.44| | | |acc_norm|61.26|± | 1.42| |arc_easy | 0|acc |83.67|± | 0.76| | | |acc_norm|80.89|± | 0.81| |boolq | 1|acc |87.83|± | 0.57| |hellaswag | 0|acc |66.45|± | 0.47| | | |acc_norm|84.63|± | 0.36| |openbookqa | 0|acc |37.40|± | 2.17| | | |acc_norm|45.80|± | 2.23| |piqa | 0|acc |82.15|± | 0.89| | | |acc_norm|83.13|± | 0.87| |winogrande | 0|acc |76.56|± | 1.19| Average: 74.3% ### TruthfulQA | Task |Version|Metric|Value| |Stderr| |-------------|------:|------|----:|---|-----:| |truthfulqa_mc| 1|mc1 |42.59|± | 1.73| | | |mc2 |58.44|± | 1.58| Average: 58.44% ### Bigbench | Task |Version| Metric |Value| |Stderr| |------------------------------------------------|------:|---------------------|----:|---|-----:| |bigbench_causal_judgement | 0|multiple_choice_grade|55.26|± | 3.62| |bigbench_date_understanding | 0|multiple_choice_grade|64.77|± | 2.49| |bigbench_disambiguation_qa | 0|multiple_choice_grade|37.60|± | 3.02| |bigbench_geometric_shapes | 0|multiple_choice_grade|32.31|± | 2.47| | | |exact_str_match |21.45|± | 2.17| |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|31.00|± | 2.07| |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|22.43|± | 1.58| |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|53.00|± | 2.89| |bigbench_movie_recommendation | 0|multiple_choice_grade|40.40|± | 2.20| |bigbench_navigate | 0|multiple_choice_grade|51.30|± | 1.58| |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|68.50|± | 1.04| |bigbench_ruin_names | 0|multiple_choice_grade|48.66|± | 2.36| |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|30.36|± | 1.46| |bigbench_snarks | 0|multiple_choice_grade|70.17|± | 3.41| |bigbench_sports_understanding | 0|multiple_choice_grade|70.39|± | 1.45| |bigbench_temporal_sequences | 0|multiple_choice_grade|31.00|± | 1.46| |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|21.44|± | 1.16| |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|18.29|± | 0.92| |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|53.00|± | 2.89| Average: 44.44% Average score: 54.95% Elapsed time: 02:50:51 ## 🧩 Configuration ```yaml models: - model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser # no parameters necessary for base model - model: flemmingmiguel/NeuDist-Ro-7B parameters: density: 0.60 weight: 0.30 - model: Blizado/discolm-mfto-7b-german-v0.1 parameters: density: 0.65 weight: 0.40 - model: ResplendentAI/Flora_DPO_7B parameters: density: 0.6 weight: 0.3 merge_method: dare_ties base_model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser parameters: int8_mask: true dtype: bfloat16 random_seed: 0 tokenizer_source: base ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "cstr/Spaetzle-v12-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```