--- tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: training_outputs results: [] --- # training_outputs This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0394 - Accuracy: 0.993 - Precision: 0.9913 - Recall: 0.9884 - F1: 0.9899 - Roc Auc: 0.9988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| | 0.045 | 0.1105 | 1000 | 0.0609 | 0.987 | 0.9798 | 0.9827 | 0.9812 | 0.9990 | | 0.0539 | 0.2210 | 2000 | 0.0471 | 0.988 | 0.9883 | 0.9769 | 0.9826 | 0.9985 | | 0.0467 | 0.3316 | 3000 | 0.0546 | 0.989 | 0.9855 | 0.9827 | 0.9841 | 0.9989 | | 0.0439 | 0.4421 | 4000 | 0.0416 | 0.99 | 0.9884 | 0.9827 | 0.9855 | 0.9990 | | 0.0419 | 0.5526 | 5000 | 0.0470 | 0.99 | 0.9855 | 0.9855 | 0.9855 | 0.9991 | | 0.0395 | 0.6631 | 6000 | 0.0396 | 0.992 | 0.9884 | 0.9884 | 0.9884 | 0.9970 | | 0.0329 | 0.7737 | 7000 | 0.0427 | 0.993 | 0.9885 | 0.9913 | 0.9899 | 0.9986 | | 0.0373 | 0.8842 | 8000 | 0.0408 | 0.992 | 0.9884 | 0.9884 | 0.9884 | 0.9988 | | 0.031 | 0.9947 | 9000 | 0.0394 | 0.993 | 0.9913 | 0.9884 | 0.9899 | 0.9988 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1