--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B tags: - axolotl - generated_from_trainer - trl - grpo model-index: - name: 6296264f-6ba2-49a8-99cc-8e195aa8cd5b results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.10.0.dev0` ```yaml adapter: lora base_model: Qwen/Qwen2.5-0.5B bf16: true chat_template: llama3 dataloader_num_workers: 0 dataloader_pin_memory: false dataset_prepared_path: null datasets: - data_files: - 686e68bae605dbd4_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_instruction: instruct field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' ddp_broadcast_buffers: false ddp_bucket_cap_mb: 25 ddp_timeout: 7200 debug: null deepspeed: null evaluation_strategy: 'no' flash_attention: true flash_attn_cross_entropy: true flash_attn_rms_norm: true fp16: false fsdp: null fsdp_config: null gpu_memory_limit: null gradient_accumulation_steps: 2 gradient_checkpointing: false gradient_checkpointing_kwargs: use_reentrant: false group_by_length: false hub_model_id: dada22231/6296264f-6ba2-49a8-99cc-8e195aa8cd5b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0005 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_modules_to_save: - embed_tokens - lm_head lora_r: 64 lora_target_linear: true lr_scheduler: constant_with_warmup max_memory: null max_steps: 6000 micro_batch_size: 8 mlflow_experiment_name: /tmp/686e68bae605dbd4_train_data.json model_type: AutoModelForCausalLM optimizer: adamw_torch_fused output_dir: ./outputs pad_to_sequence_len: true push_to_hub: true resume_from_checkpoint: null s2_attention: null sample_packing: true save_only_model: true save_safetensors: true save_steps: 100 save_strategy: steps save_total_limit: 5 sequence_len: 4096 special_tokens: null strict: false tf32: true tokenizer_type: AutoTokenizer torch_compile: false torch_compile_backend: inductor train_on_inputs: false trust_remote_code: true val_set_size: 0 wandb_entity: null wandb_mode: online wandb_name: 714bf050-a47b-4ede-93c9-e46fdbc136dc wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 714bf050-a47b-4ede-93c9-e46fdbc136dc warmup_steps: 200 weight_decay: 0.01 xformers_attention: null ```

# 6296264f-6ba2-49a8-99cc-8e195aa8cd5b This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 200 - training_steps: 6000 ### Training results ### Framework versions - PEFT 0.15.2 - Transformers 4.52.3 - Pytorch 2.5.1+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1