Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
library_name: bm25s
|
| 4 |
+
tags:
|
| 5 |
+
- bm25
|
| 6 |
+
- bm25s
|
| 7 |
+
- retrieval
|
| 8 |
+
- search
|
| 9 |
+
- lexical
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# BM25S Index
|
| 13 |
+
|
| 14 |
+
This is a BM25S index created with the [`bm25s` library](https://github.com/xhluca/bm25s) (version `{version}`), an ultra-fast implementation of BM25. It can be used for lexical retrieval tasks.
|
| 15 |
+
|
| 16 |
+
BM25S Related Links:
|
| 17 |
+
|
| 18 |
+
* 🏠[Homepage](https://bm25s.github.io)
|
| 19 |
+
* 💻[GitHub Repository](https://github.com/xhluca/bm25s)
|
| 20 |
+
* 🤗[Blog Post](https://huggingface.co/blog/xhluca/bm25s)
|
| 21 |
+
* 📝[Technical Report](https://arxiv.org/abs/2407.03618)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
## Installation
|
| 25 |
+
|
| 26 |
+
You can install the `bm25s` library with `pip`:
|
| 27 |
+
|
| 28 |
+
```bash
|
| 29 |
+
pip install "bm25s==0.2.0"
|
| 30 |
+
|
| 31 |
+
# For huggingface hub usage
|
| 32 |
+
pip install huggingface_hub
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
## Loading a `bm25s` index
|
| 36 |
+
|
| 37 |
+
You can use this index for information retrieval tasks. Here is an example:
|
| 38 |
+
|
| 39 |
+
```python
|
| 40 |
+
import bm25s
|
| 41 |
+
from bm25s.hf import BM25HF
|
| 42 |
+
|
| 43 |
+
# Load the index
|
| 44 |
+
retriever = BM25HF.load_from_hub("{username}/{repo_name}}")
|
| 45 |
+
|
| 46 |
+
# You can retrieve now
|
| 47 |
+
query = "a cat is a feline"
|
| 48 |
+
results = retriever.retrieve(bm25s.tokenize(query), k=3)
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
## Saving a `bm25s` index
|
| 52 |
+
|
| 53 |
+
You can save a `bm25s` index to the Hugging Face Hub. Here is an example:
|
| 54 |
+
|
| 55 |
+
```python
|
| 56 |
+
import bm25s
|
| 57 |
+
from bm25s.hf import BM25HF
|
| 58 |
+
|
| 59 |
+
corpus = [
|
| 60 |
+
"a cat is a feline and likes to purr",
|
| 61 |
+
"a dog is the human's best friend and loves to play",
|
| 62 |
+
"a bird is a beautiful animal that can fly",
|
| 63 |
+
"a fish is a creature that lives in water and swims",
|
| 64 |
+
]
|
| 65 |
+
|
| 66 |
+
retriever = BM25HF(corpus=corpus)
|
| 67 |
+
retriever.index(bm25s.tokenize(corpus))
|
| 68 |
+
|
| 69 |
+
token = None # You can get a token from the Hugging Face website
|
| 70 |
+
retriever.save_to_hub("{username}/{repo_name}", token=token)
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
## Advanced usage
|
| 74 |
+
|
| 75 |
+
You can leverage more advanced features of the BM25S library during `load_from_hub`:
|
| 76 |
+
|
| 77 |
+
```python
|
| 78 |
+
# Load corpus and index in memory-map (mmap=True) to reduce memory
|
| 79 |
+
retriever = BM25HF.load_from_hub("{username}/{repo_name}", load_corpus=True, mmap=True)
|
| 80 |
+
|
| 81 |
+
# Load a different branch/revision
|
| 82 |
+
retriever = BM25HF.load_from_hub("{username}/{repo_name}", revision="main")
|
| 83 |
+
|
| 84 |
+
# Change directory where the local files should be downloaded
|
| 85 |
+
retriever = BM25HF.load_from_hub("{username}/{repo_name}", local_dir="/path/to/dir")
|
| 86 |
+
|
| 87 |
+
# Load private repositories with a token:
|
| 88 |
+
retriever = BM25HF.load_from_hub("{username}/{repo_name}", token=token)
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
## Stats
|
| 92 |
+
|
| 93 |
+
This dataset was created using the following data:
|
| 94 |
+
|
| 95 |
+
| Statistic | Value |
|
| 96 |
+
| --- | --- |
|
| 97 |
+
| Number of documents | {num_docs} |
|
| 98 |
+
| Number of tokens | {num_tokens} |
|
| 99 |
+
| Average tokens per document | {avg_tokens_per_doc} |
|
| 100 |
+
|
| 101 |
+
## Parameters
|
| 102 |
+
|
| 103 |
+
The index was created with the following parameters:
|
| 104 |
+
|
| 105 |
+
| Parameter | Value |
|
| 106 |
+
| --- | --- |
|
| 107 |
+
| k1 | `{k1}` |
|
| 108 |
+
| b | `{b}` |
|
| 109 |
+
| delta | `{delta}` |
|
| 110 |
+
| method | `{method}` |
|
| 111 |
+
| idf method | `{idf_method}` |
|
| 112 |
+
|
| 113 |
+
## Citation
|
| 114 |
+
|
| 115 |
+
To cite `bm25s`, please use the following bibtex:
|
| 116 |
+
|
| 117 |
+
```
|
| 118 |
+
@misc{lu_2024_bm25s,
|
| 119 |
+
title={BM25S: Orders of magnitude faster lexical search via eager sparse scoring},
|
| 120 |
+
author={Xing Han Lù},
|
| 121 |
+
year={2024},
|
| 122 |
+
eprint={2407.03618},
|
| 123 |
+
archivePrefix={arXiv},
|
| 124 |
+
primaryClass={cs.IR},
|
| 125 |
+
url={https://arxiv.org/abs/2407.03618},
|
| 126 |
+
}
|
| 127 |
+
```
|