File size: 2,505 Bytes
6a1fc46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a7e9eb
6a1fc46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a7e9eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a1fc46
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: bigcode-openrail-m
base_model: bigcode/starcoderbase-7b
tags:
- generated_from_trainer
model-index:
- name: starcoderbase_4096_context_length
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# starcoderbase_4096_context_length

This model is a fine-tuned version of [bigcode/starcoderbase-7b](https://huggingface.co/bigcode/starcoderbase-7b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8695

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- training_steps: 2000

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.4754        | 0.05  | 100  | 0.5687          |
| 0.3079        | 0.1   | 200  | 0.5495          |
| 0.1744        | 0.15  | 300  | 0.5829          |
| 0.1132        | 0.2   | 400  | 0.6087          |
| 0.1177        | 0.25  | 500  | 0.6039          |
| 0.0716        | 0.3   | 600  | 0.6470          |
| 0.0653        | 0.35  | 700  | 0.6801          |
| 0.1156        | 0.4   | 800  | 0.6671          |
| 0.0536        | 0.45  | 900  | 0.6707          |
| 0.0582        | 0.5   | 1000 | 0.7050          |
| 0.0313        | 0.55  | 1100 | 0.7505          |
| 0.0301        | 0.6   | 1200 | 0.7616          |
| 0.022         | 0.65  | 1300 | 0.7948          |
| 0.0241        | 0.7   | 1400 | 0.8004          |
| 0.0197        | 0.75  | 1500 | 0.8240          |
| 0.0181        | 0.8   | 1600 | 0.8357          |
| 0.0175        | 0.85  | 1700 | 0.8638          |
| 0.0162        | 0.9   | 1800 | 0.8632          |
| 0.0172        | 0.95  | 1900 | 0.8710          |
| 0.0152        | 1.0   | 2000 | 0.8695          |


### Framework versions

- Transformers 4.43.3
- Pytorch 2.4.0a0+07cecf4168.nv24.05
- Datasets 2.20.0
- Tokenizers 0.19.1