damerajee commited on
Commit
7f1786a
1 Parent(s): 22765cc

Create configuration_gpt2vision.py

Browse files
Files changed (1) hide show
  1. configuration_gpt2vision.py +279 -0
configuration_gpt2vision.py ADDED
@@ -0,0 +1,279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """OpenAI GPT-2 configuration"""
17
+
18
+ from collections import OrderedDict
19
+ from typing import Any, List, Mapping, Optional
20
+
21
+ from transformers import PreTrainedTokenizer, TensorType, is_torch_available
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.onnx import OnnxConfigWithPast, PatchingSpec
24
+ from transformers.utils import logging
25
+
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+
30
+ class GPT2Config(PretrainedConfig):
31
+ """
32
+ This is the configuration class to store the configuration of a [`GPT2Model`] or a [`TFGPT2Model`]. It is used to
33
+ instantiate a GPT-2 model according to the specified arguments, defining the model architecture. Instantiating a
34
+ configuration with the defaults will yield a similar configuration to that of the GPT-2
35
+ [openai-community/gpt2](https://huggingface.co/openai-community/gpt2) architecture.
36
+
37
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
+ documentation from [`PretrainedConfig`] for more information.
39
+
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 50257):
43
+ Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`GPT2Model`] or [`TFGPT2Model`].
45
+ n_positions (`int`, *optional*, defaults to 1024):
46
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
47
+ just in case (e.g., 512 or 1024 or 2048).
48
+ n_embd (`int`, *optional*, defaults to 768):
49
+ Dimensionality of the embeddings and hidden states.
50
+ n_layer (`int`, *optional*, defaults to 12):
51
+ Number of hidden layers in the Transformer encoder.
52
+ n_head (`int`, *optional*, defaults to 12):
53
+ Number of attention heads for each attention layer in the Transformer encoder.
54
+ n_inner (`int`, *optional*):
55
+ Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
56
+ activation_function (`str`, *optional*, defaults to `"gelu_new"`):
57
+ Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
58
+ resid_pdrop (`float`, *optional*, defaults to 0.1):
59
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
60
+ embd_pdrop (`float`, *optional*, defaults to 0.1):
61
+ The dropout ratio for the embeddings.
62
+ attn_pdrop (`float`, *optional*, defaults to 0.1):
63
+ The dropout ratio for the attention.
64
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
65
+ The epsilon to use in the layer normalization layers.
66
+ initializer_range (`float`, *optional*, defaults to 0.02):
67
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
68
+ summary_type (`string`, *optional*, defaults to `"cls_index"`):
69
+ Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
70
+ [`TFGPT2DoubleHeadsModel`].
71
+
72
+ Has to be one of the following options:
73
+
74
+ - `"last"`: Take the last token hidden state (like XLNet).
75
+ - `"first"`: Take the first token hidden state (like BERT).
76
+ - `"mean"`: Take the mean of all tokens hidden states.
77
+ - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
78
+ - `"attn"`: Not implemented now, use multi-head attention.
79
+ summary_use_proj (`bool`, *optional*, defaults to `True`):
80
+ Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
81
+ [`TFGPT2DoubleHeadsModel`].
82
+
83
+ Whether or not to add a projection after the vector extraction.
84
+ summary_activation (`str`, *optional*):
85
+ Argument used when doing sequence summary. Used in for the multiple choice head in
86
+ [`GPT2DoubleHeadsModel`].
87
+
88
+ Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
89
+ summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
90
+ Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
91
+ [`TFGPT2DoubleHeadsModel`].
92
+
93
+ Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
94
+ summary_first_dropout (`float`, *optional*, defaults to 0.1):
95
+ Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
96
+ [`TFGPT2DoubleHeadsModel`].
97
+
98
+ The dropout ratio to be used after the projection and activation.
99
+ scale_attn_weights (`bool`, *optional*, defaults to `True`):
100
+ Scale attention weights by dividing by sqrt(hidden_size)..
101
+ use_cache (`bool`, *optional*, defaults to `True`):
102
+ Whether or not the model should return the last key/values attentions (not used by all models).
103
+ bos_token_id (`int`, *optional*, defaults to 50256):
104
+ Id of the beginning of sentence token in the vocabulary.
105
+ eos_token_id (`int`, *optional*, defaults to 50256):
106
+ Id of the end of sentence token in the vocabulary.
107
+ scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
108
+ Whether to additionally scale attention weights by `1 / layer_idx + 1`.
109
+ reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
110
+ Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
111
+ dot-product/softmax to float() when training with mixed precision.
112
+
113
+ Example:
114
+
115
+ ```python
116
+ >>> from transformers import GPT2Config, GPT2Model
117
+
118
+ >>> # Initializing a GPT2 configuration
119
+ >>> configuration = GPT2Config()
120
+
121
+ >>> # Initializing a model (with random weights) from the configuration
122
+ >>> model = GPT2Model(configuration)
123
+
124
+ >>> # Accessing the model configuration
125
+ >>> configuration = model.config
126
+ ```"""
127
+
128
+ model_type = "gpt2"
129
+ keys_to_ignore_at_inference = ["past_key_values"]
130
+ attribute_map = {
131
+ "hidden_size": "n_embd",
132
+ "max_position_embeddings": "n_positions",
133
+ "num_attention_heads": "n_head",
134
+ "num_hidden_layers": "n_layer",
135
+ }
136
+
137
+ def __init__(
138
+ self,
139
+ vocab_size=50258,
140
+ n_positions=1024,
141
+ n_embd=768,
142
+ n_layer=12,
143
+ n_head=12,
144
+ n_inner=None,
145
+ activation_function="gelu_new",
146
+ resid_pdrop=0.1,
147
+ embd_pdrop=0.1,
148
+ attn_pdrop=0.1,
149
+ layer_norm_epsilon=1e-5,
150
+ initializer_range=0.02,
151
+ summary_type="cls_index",
152
+ summary_use_proj=True,
153
+ summary_activation=None,
154
+ summary_proj_to_labels=True,
155
+ summary_first_dropout=0.1,
156
+ scale_attn_weights=True,
157
+ use_cache=True,
158
+ bos_token_id=50256,
159
+ eos_token_id=50256,
160
+ scale_attn_by_inverse_layer_idx=False,
161
+ reorder_and_upcast_attn=False,
162
+ **kwargs,
163
+ ):
164
+ self.vocab_size = vocab_size
165
+ self.n_positions = n_positions
166
+ self.n_embd = n_embd
167
+ self.n_layer = n_layer
168
+ self.n_head = n_head
169
+ self.n_inner = n_inner
170
+ self.activation_function = activation_function
171
+ self.resid_pdrop = resid_pdrop
172
+ self.embd_pdrop = embd_pdrop
173
+ self.attn_pdrop = attn_pdrop
174
+ self.layer_norm_epsilon = layer_norm_epsilon
175
+ self.initializer_range = initializer_range
176
+ self.summary_type = summary_type
177
+ self.summary_use_proj = summary_use_proj
178
+ self.summary_activation = summary_activation
179
+ self.summary_first_dropout = summary_first_dropout
180
+ self.summary_proj_to_labels = summary_proj_to_labels
181
+ self.scale_attn_weights = scale_attn_weights
182
+ self.use_cache = use_cache
183
+ self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
184
+ self.reorder_and_upcast_attn = reorder_and_upcast_attn
185
+
186
+ self.bos_token_id = bos_token_id
187
+ self.eos_token_id = eos_token_id
188
+
189
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
190
+
191
+
192
+ class GPT2OnnxConfig(OnnxConfigWithPast):
193
+ def __init__(
194
+ self,
195
+ config: PretrainedConfig,
196
+ task: str = "default",
197
+ patching_specs: List[PatchingSpec] = None,
198
+ use_past: bool = False,
199
+ ):
200
+ super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
201
+ if not getattr(self._config, "pad_token_id", None):
202
+ # TODO: how to do that better?
203
+ self._config.pad_token_id = 0
204
+
205
+ @property
206
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
207
+ common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
208
+ if self.use_past:
209
+ self.fill_with_past_key_values_(common_inputs, direction="inputs")
210
+ common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
211
+ else:
212
+ common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
213
+
214
+ return common_inputs
215
+
216
+ @property
217
+ def num_layers(self) -> int:
218
+ return self._config.n_layer
219
+
220
+ @property
221
+ def num_attention_heads(self) -> int:
222
+ return self._config.n_head
223
+
224
+ def generate_dummy_inputs(
225
+ self,
226
+ tokenizer: PreTrainedTokenizer,
227
+ batch_size: int = -1,
228
+ seq_length: int = -1,
229
+ is_pair: bool = False,
230
+ framework: Optional[TensorType] = None,
231
+ ) -> Mapping[str, Any]:
232
+ common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
233
+ tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
234
+ )
235
+
236
+ # We need to order the input in the way they appears in the forward()
237
+ ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
238
+
239
+ # Need to add the past_keys
240
+ if self.use_past:
241
+ if not is_torch_available():
242
+ raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
243
+ else:
244
+ import torch
245
+
246
+ batch, seqlen = common_inputs["input_ids"].shape
247
+ # Not using the same length for past_key_values
248
+ past_key_values_length = seqlen + 2
249
+ past_shape = (
250
+ batch,
251
+ self.num_attention_heads,
252
+ past_key_values_length,
253
+ self._config.hidden_size // self.num_attention_heads,
254
+ )
255
+ ordered_inputs["past_key_values"] = [
256
+ (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers)
257
+ ]
258
+
259
+ ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
260
+ if self.use_past:
261
+ mask_dtype = ordered_inputs["attention_mask"].dtype
262
+ ordered_inputs["attention_mask"] = torch.cat(
263
+ [ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
264
+ )
265
+
266
+ return ordered_inputs
267
+
268
+ @property
269
+ def default_onnx_opset(self) -> int:
270
+ return 13
271
+
272
+ class GPT2VisionConfig(PretrainedConfig):
273
+ model_type = "gptvision"
274
+
275
+ def __init__(self, **kwargs):
276
+ super().__init__(**kwargs)
277
+ self.gpt2_config = GPT2Config(**kwargs)
278
+
279
+