dangtr0408 commited on
Commit
a92164f
·
1 Parent(s): 82da400

Update inference.py and meldataset.py

Browse files
Models/del_training.ipynb DELETED
@@ -1,62 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 1,
6
- "id": "2b6bb4be",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import os\n",
11
- "import torch"
12
- ]
13
- },
14
- {
15
- "cell_type": "code",
16
- "execution_count": null,
17
- "id": "dc802b47",
18
- "metadata": {},
19
- "outputs": [],
20
- "source": [
21
- "models_path = \"./current_model_120k_vi.pth\"\n",
22
- "name = \"./model.pth\"\n",
23
- "params_whole = torch.load(models_path, map_location='cpu')\n",
24
- "\n",
25
- "for key in list(params_whole.keys()):\n",
26
- " if key != 'net':\n",
27
- " params_whole.pop(key)\n",
28
- "\n",
29
- "keep = ['decoder', 'predictor', 'text_encoder', 'style_encoder']\n",
30
- "for module_name in list(params_whole['net'].keys()):\n",
31
- " if module_name not in keep:\n",
32
- " params_whole['net'].pop(module_name)\n",
33
- "\n",
34
- "torch.save(params_whole, name)\n",
35
- "\n",
36
- "\n",
37
- "#os.remove(models_path)"
38
- ]
39
- }
40
- ],
41
- "metadata": {
42
- "kernelspec": {
43
- "display_name": "base",
44
- "language": "python",
45
- "name": "python3"
46
- },
47
- "language_info": {
48
- "codemirror_mode": {
49
- "name": "ipython",
50
- "version": 3
51
- },
52
- "file_extension": ".py",
53
- "mimetype": "text/x-python",
54
- "name": "python",
55
- "nbconvert_exporter": "python",
56
- "pygments_lexer": "ipython3",
57
- "version": "3.11.7"
58
- }
59
- },
60
- "nbformat": 4,
61
- "nbformat_minor": 5
62
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Models/{model.pth → inference/model.pth} RENAMED
File without changes
inference.py CHANGED
@@ -1,13 +1,10 @@
1
  import re
2
- import sys
3
  import yaml
4
  from munch import Munch
5
- import unicodedata
6
  import numpy as np
7
  import librosa
8
  import noisereduce as nr
9
- import phonemizer
10
-
11
  import torch
12
  import torchaudio
13
  from nltk.tokenize import word_tokenize
@@ -17,6 +14,8 @@ nltk.download('punkt_tab')
17
  from models import ProsodyPredictor, TextEncoder, StyleEncoder
18
  from Modules.hifigan import Decoder
19
 
 
 
20
  if sys.platform.startswith("win"):
21
  try:
22
  from phonemizer.backend.espeak.wrapper import EspeakWrapper
@@ -32,48 +31,13 @@ def espeak_phn(text, lang):
32
  except Exception as e:
33
  print(e)
34
 
35
- # IPA Phonemizer: https://github.com/bootphon/phonemizer
36
- # Total including extend chars 189
37
-
38
- _pad = "$"
39
- _punctuation = ';:,.!?¡¿—…"«»“” '
40
- _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
41
- _letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
42
- _extend = "∫̆ăη͡123456"
43
-
44
- # Export all symbols:
45
- symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa) + list(_extend)
46
-
47
- dicts = {}
48
- for i in range(len((symbols))):
49
- dicts[symbols[i]] = i
50
-
51
- class TextCleaner:
52
- def __init__(self, dummy=None):
53
- self.word_index_dictionary = dicts
54
- #print(len(dicts))
55
- def __call__(self, text):
56
- indexes = []
57
- for char in text:
58
- try:
59
- indexes.append(self.word_index_dictionary[char])
60
- except KeyError as e:
61
- #print(char)
62
- continue
63
- return indexes
64
-
65
  class Preprocess:
66
  def __text_normalize(self, text):
67
  punctuation = [",", "、", "،", ";", "(", ".", "。", "…", "!", "–", ":", "?"]
68
  map_to = "."
69
  punctuation_pattern = re.compile(f"[{''.join(re.escape(p) for p in punctuation)}]")
70
- #ensure consistency.
71
- text = unicodedata.normalize('NFKC', text)
72
  #replace punctuation that acts like a comma or period
73
- #text = re.sub(r'\.{2,}', '.', text)
74
  text = punctuation_pattern.sub(map_to, text)
75
- #remove or replace special chars except . , { } % $ & ' - \ /
76
- text = re.sub(r'[^\w\s.,{}%$&\'\-\[\]\/]', ' ', text)
77
  #replace consecutive whitespace chars with a single space and strip leading/trailing spaces
78
  text = re.sub(r'\s+', ' ', text).strip()
79
  return text
@@ -102,7 +66,7 @@ class Preprocess:
102
  mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
103
  return mel_tensor
104
  def text_preprocess(self, text, n_merge=12):
105
- text_norm = self.__text_normalize(text).replace(",", ".").split(".")#split.
106
  text_norm = [s.strip() for s in text_norm]
107
  text_norm = list(filter(lambda x: x != '', text_norm)) #filter empty index
108
  text_norm = self.__merge_fragments(text_norm, n=n_merge) #merge if a sentence has less that n
@@ -118,9 +82,31 @@ class StyleTTS2(torch.nn.Module):
118
  super().__init__()
119
  self.register_buffer("get_device", torch.empty(0))
120
  self.preprocess = Preprocess()
121
-
122
- config = yaml.safe_load(open(config_path))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
  args = self.__recursive_munch(config['model_params'])
 
 
 
124
 
125
  assert args.decoder.type in ['hifigan'], 'Decoder type unknown'
126
 
@@ -225,7 +211,7 @@ class StyleTTS2(torch.nn.Module):
225
  for i in range(jump, total_len, jump):
226
  if i+jump >= total_len:
227
  left_dur = (total_len-i)/sr
228
- if left_dur >= 0.5: #Still count if left over dur is >= 0.5s
229
  mel_tensor = self.preprocess.wave_preprocess(audio[i:total_len]).to(device)
230
  ref_s += self.style_encoder(mel_tensor.unsqueeze(1))
231
  count += 1
@@ -245,7 +231,7 @@ class StyleTTS2(torch.nn.Module):
245
  speed = min(max(speed, 0.0001), 2) #speed range [0, 2]
246
 
247
  phonem = ' '.join(word_tokenize(phonem))
248
- tokens = TextCleaner()(phonem)
249
  tokens.insert(0, 0)
250
  tokens.append(0)
251
  tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
 
1
  import re
 
2
  import yaml
3
  from munch import Munch
 
4
  import numpy as np
5
  import librosa
6
  import noisereduce as nr
7
+ from meldataset import TextCleaner
 
8
  import torch
9
  import torchaudio
10
  from nltk.tokenize import word_tokenize
 
14
  from models import ProsodyPredictor, TextEncoder, StyleEncoder
15
  from Modules.hifigan import Decoder
16
 
17
+ import sys
18
+ import phonemizer
19
  if sys.platform.startswith("win"):
20
  try:
21
  from phonemizer.backend.espeak.wrapper import EspeakWrapper
 
31
  except Exception as e:
32
  print(e)
33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  class Preprocess:
35
  def __text_normalize(self, text):
36
  punctuation = [",", "、", "،", ";", "(", ".", "。", "…", "!", "–", ":", "?"]
37
  map_to = "."
38
  punctuation_pattern = re.compile(f"[{''.join(re.escape(p) for p in punctuation)}]")
 
 
39
  #replace punctuation that acts like a comma or period
 
40
  text = punctuation_pattern.sub(map_to, text)
 
 
41
  #replace consecutive whitespace chars with a single space and strip leading/trailing spaces
42
  text = re.sub(r'\s+', ' ', text).strip()
43
  return text
 
66
  mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
67
  return mel_tensor
68
  def text_preprocess(self, text, n_merge=12):
69
+ text_norm = self.__text_normalize(text).split(".")#split by sentences.
70
  text_norm = [s.strip() for s in text_norm]
71
  text_norm = list(filter(lambda x: x != '', text_norm)) #filter empty index
72
  text_norm = self.__merge_fragments(text_norm, n=n_merge) #merge if a sentence has less that n
 
82
  super().__init__()
83
  self.register_buffer("get_device", torch.empty(0))
84
  self.preprocess = Preprocess()
85
+ self.ref_s = None
86
+ config = yaml.safe_load(open(config_path, "r", encoding="utf-8"))
87
+
88
+ try:
89
+ symbols = (
90
+ list(config['symbol']['pad']) +
91
+ list(config['symbol']['punctuation']) +
92
+ list(config['symbol']['letters']) +
93
+ list(config['symbol']['letters_ipa']) +
94
+ list(config['symbol']['extend'])
95
+ )
96
+ symbol_dict = {}
97
+ for i in range(len((symbols))):
98
+ symbol_dict[symbols[i]] = i
99
+
100
+ n_token = len(symbol_dict) + 1
101
+ print("\nFound:", n_token, "symbols")
102
+ except Exception as e:
103
+ print(f"\nERROR: Cannot find {e} in config file!\nYour config file is likely outdated, please download updated version from the repository.")
104
+ raise SystemExit(1)
105
+
106
  args = self.__recursive_munch(config['model_params'])
107
+ args['n_token'] = n_token
108
+
109
+ self.cleaner = TextCleaner(symbol_dict, debug=False)
110
 
111
  assert args.decoder.type in ['hifigan'], 'Decoder type unknown'
112
 
 
211
  for i in range(jump, total_len, jump):
212
  if i+jump >= total_len:
213
  left_dur = (total_len-i)/sr
214
+ if left_dur >= 1: #Still count if left over dur is >= 1s
215
  mel_tensor = self.preprocess.wave_preprocess(audio[i:total_len]).to(device)
216
  ref_s += self.style_encoder(mel_tensor.unsqueeze(1))
217
  count += 1
 
231
  speed = min(max(speed, 0.0001), 2) #speed range [0, 2]
232
 
233
  phonem = ' '.join(word_tokenize(phonem))
234
+ tokens = self.cleaner(phonem)
235
  tokens.insert(0, 0)
236
  tokens.append(0)
237
  tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
meldataset.py ADDED
@@ -0,0 +1,307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #coding: utf-8
2
+ import os.path as osp
3
+ import random
4
+ import numpy as np
5
+ import random
6
+ import soundfile as sf
7
+ import librosa
8
+
9
+ import torch
10
+ import torchaudio
11
+ import torch.utils.data
12
+ import torch.distributed as dist
13
+ from multiprocessing import Pool
14
+
15
+ import logging
16
+ logger = logging.getLogger(__name__)
17
+ logger.setLevel(logging.DEBUG)
18
+
19
+ import pandas as pd
20
+
21
+ class TextCleaner:
22
+ def __init__(self, symbol_dict, debug=True):
23
+ self.word_index_dictionary = symbol_dict
24
+ self.debug = debug
25
+ def __call__(self, text):
26
+ indexes = []
27
+ for char in text:
28
+ try:
29
+ indexes.append(self.word_index_dictionary[char])
30
+ except KeyError as e:
31
+ if self.debug:
32
+ print("\nWARNING UNKNOWN IPA CHARACTERS/LETTERS: ", char)
33
+ print("To ignore set 'debug' to false in the config")
34
+ continue
35
+ return indexes
36
+
37
+ np.random.seed(1)
38
+ random.seed(1)
39
+ SPECT_PARAMS = {
40
+ "n_fft": 2048,
41
+ "win_length": 1200,
42
+ "hop_length": 300
43
+ }
44
+ MEL_PARAMS = {
45
+ "n_mels": 80,
46
+ }
47
+
48
+ to_mel = torchaudio.transforms.MelSpectrogram(
49
+ n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
50
+ mean, std = -4, 4
51
+
52
+ def preprocess(wave):
53
+ wave_tensor = torch.from_numpy(wave).float()
54
+ mel_tensor = to_mel(wave_tensor)
55
+ mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
56
+ return mel_tensor
57
+
58
+ class FilePathDataset(torch.utils.data.Dataset):
59
+ def __init__(self,
60
+ data_list,
61
+ root_path,
62
+ symbol_dict,
63
+ sr=24000,
64
+ data_augmentation=False,
65
+ validation=False,
66
+ debug=True
67
+ ):
68
+
69
+ _data_list = [l.strip().split('|') for l in data_list]
70
+ self.data_list = _data_list #[data if len(data) == 3 else (*data, 0) for data in _data_list] #append speakerid=0 for all
71
+ self.text_cleaner = TextCleaner(symbol_dict, debug)
72
+ self.sr = sr
73
+
74
+ self.df = pd.DataFrame(self.data_list)
75
+
76
+ self.to_melspec = torchaudio.transforms.MelSpectrogram(**MEL_PARAMS)
77
+
78
+ self.mean, self.std = -4, 4
79
+ self.data_augmentation = data_augmentation and (not validation)
80
+ self.max_mel_length = 192
81
+
82
+ self.root_path = root_path
83
+
84
+ def __len__(self):
85
+ return len(self.data_list)
86
+
87
+ def __getitem__(self, idx):
88
+ data = self.data_list[idx]
89
+ path = data[0]
90
+
91
+ wave, text_tensor = self._load_tensor(data)
92
+
93
+ mel_tensor = preprocess(wave).squeeze()
94
+
95
+ acoustic_feature = mel_tensor.squeeze()
96
+ length_feature = acoustic_feature.size(1)
97
+ acoustic_feature = acoustic_feature[:, :(length_feature - length_feature % 2)]
98
+
99
+ return acoustic_feature, text_tensor, path, wave
100
+
101
+ def _load_tensor(self, data):
102
+ wave_path, text = data
103
+ wave, sr = sf.read(osp.join(self.root_path, wave_path))
104
+ if wave.shape[-1] == 2:
105
+ wave = wave[:, 0].squeeze()
106
+ if sr != 24000:
107
+ wave = librosa.resample(wave, orig_sr=sr, target_sr=24000)
108
+ print(wave_path, sr)
109
+
110
+ # Adding half a second padding.
111
+ wave = np.concatenate([np.zeros([12000]), wave, np.zeros([12000])], axis=0)
112
+
113
+ text = self.text_cleaner(text)
114
+
115
+ text.insert(0, 0)
116
+ text.append(0)
117
+
118
+ text = torch.LongTensor(text)
119
+
120
+ return wave, text
121
+
122
+ def _load_data(self, data):
123
+ wave, text_tensor = self._load_tensor(data)
124
+ mel_tensor = preprocess(wave).squeeze()
125
+
126
+ mel_length = mel_tensor.size(1)
127
+ if mel_length > self.max_mel_length:
128
+ random_start = np.random.randint(0, mel_length - self.max_mel_length)
129
+ mel_tensor = mel_tensor[:, random_start:random_start + self.max_mel_length]
130
+
131
+ return mel_tensor
132
+
133
+
134
+ class Collater(object):
135
+ """
136
+ Args:
137
+ adaptive_batch_size (bool): if true, decrease batch size when long data comes.
138
+ """
139
+
140
+ def __init__(self, return_wave=False):
141
+ self.text_pad_index = 0
142
+ self.min_mel_length = 192
143
+ self.max_mel_length = 192
144
+ self.return_wave = return_wave
145
+
146
+
147
+ def __call__(self, batch):
148
+ batch_size = len(batch)
149
+
150
+ # sort by mel length
151
+ lengths = [b[0].shape[1] for b in batch]
152
+ batch_indexes = np.argsort(lengths)[::-1]
153
+ batch = [batch[bid] for bid in batch_indexes]
154
+
155
+ nmels = batch[0][0].size(0)
156
+ max_mel_length = max([b[0].shape[1] for b in batch])
157
+ max_text_length = max([b[1].shape[0] for b in batch])
158
+
159
+ mels = torch.zeros((batch_size, nmels, max_mel_length)).float()
160
+ texts = torch.zeros((batch_size, max_text_length)).long()
161
+
162
+ input_lengths = torch.zeros(batch_size).long()
163
+ output_lengths = torch.zeros(batch_size).long()
164
+ paths = ['' for _ in range(batch_size)]
165
+ waves = [None for _ in range(batch_size)]
166
+
167
+ for bid, (mel, text, path, wave) in enumerate(batch):
168
+ mel_size = mel.size(1)
169
+ text_size = text.size(0)
170
+ mels[bid, :, :mel_size] = mel
171
+ texts[bid, :text_size] = text
172
+ input_lengths[bid] = text_size
173
+ output_lengths[bid] = mel_size
174
+ paths[bid] = path
175
+
176
+ waves[bid] = wave
177
+
178
+ return waves, texts, input_lengths, mels, output_lengths
179
+
180
+
181
+ def get_length(wave_path, root_path):
182
+ info = sf.info(osp.join(root_path, wave_path))
183
+ return info.frames * (24000 / info.samplerate)
184
+
185
+ def build_dataloader(path_list,
186
+ root_path,
187
+ symbol_dict,
188
+ validation=False,
189
+ batch_size=4,
190
+ num_workers=1,
191
+ device='cpu',
192
+ collate_config={},
193
+ dataset_config={}):
194
+
195
+ dataset = FilePathDataset(path_list, root_path, symbol_dict, validation=validation, **dataset_config)
196
+ collate_fn = Collater(**collate_config)
197
+
198
+ print("Getting sample lengths...")
199
+
200
+ num_processes = num_workers * 2
201
+ if num_processes != 0:
202
+ list_of_tuples = [(d[0], root_path) for d in dataset.data_list]
203
+ with Pool(processes=num_processes) as pool:
204
+ sample_lengths = pool.starmap(get_length, list_of_tuples, chunksize=16)
205
+ else:
206
+ sample_lengths = []
207
+ for d in dataset.data_list:
208
+ sample_lengths.append(get_length(d[0], root_path))
209
+
210
+ data_loader = torch.utils.data.DataLoader(
211
+ dataset,
212
+ num_workers=num_workers,
213
+ batch_sampler=BatchSampler(
214
+ sample_lengths,
215
+ batch_size,
216
+ shuffle=(not validation),
217
+ drop_last=(not validation),
218
+ num_replicas=1,
219
+ rank=0,
220
+ ),
221
+ collate_fn=collate_fn,
222
+ pin_memory=(device != "cpu"),
223
+ )
224
+
225
+ return data_loader
226
+
227
+ #https://github.com/duerig/StyleTTS2/
228
+ class BatchSampler(torch.utils.data.Sampler):
229
+ def __init__(
230
+ self,
231
+ sample_lengths,
232
+ batch_sizes,
233
+ num_replicas=None,
234
+ rank=None,
235
+ shuffle=True,
236
+ drop_last=False,
237
+ ):
238
+ self.batch_sizes = batch_sizes
239
+ if num_replicas is None:
240
+ self.num_replicas = dist.get_world_size()
241
+ else:
242
+ self.num_replicas = num_replicas
243
+ if rank is None:
244
+ self.rank = dist.get_rank()
245
+ else:
246
+ self.rank = rank
247
+ self.shuffle = shuffle
248
+ self.drop_last = drop_last
249
+
250
+ self.time_bins = {}
251
+ self.epoch = 0
252
+ self.total_len = 0
253
+ self.last_bin = None
254
+
255
+ for i in range(len(sample_lengths)):
256
+ bin_num = self.get_time_bin(sample_lengths[i])
257
+ if bin_num != -1:
258
+ if bin_num not in self.time_bins:
259
+ self.time_bins[bin_num] = []
260
+ self.time_bins[bin_num].append(i)
261
+
262
+ for key in self.time_bins.keys():
263
+ val = self.time_bins[key]
264
+ total_batch = self.batch_sizes * num_replicas
265
+ self.total_len += len(val) // total_batch
266
+ if not self.drop_last and len(val) % total_batch != 0:
267
+ self.total_len += 1
268
+
269
+ def __iter__(self):
270
+ sampler_order = list(self.time_bins.keys())
271
+ sampler_indices = []
272
+
273
+ if self.shuffle:
274
+ sampler_indices = torch.randperm(len(sampler_order)).tolist()
275
+ else:
276
+ sampler_indices = list(range(len(sampler_order)))
277
+
278
+ for index in sampler_indices:
279
+ key = sampler_order[index]
280
+ current_bin = self.time_bins[key]
281
+ dist = torch.utils.data.distributed.DistributedSampler(
282
+ current_bin,
283
+ num_replicas=self.num_replicas,
284
+ rank=self.rank,
285
+ shuffle=self.shuffle,
286
+ drop_last=self.drop_last,
287
+ )
288
+ dist.set_epoch(self.epoch)
289
+ sampler = torch.utils.data.sampler.BatchSampler(
290
+ dist, self.batch_sizes, self.drop_last
291
+ )
292
+ for item_list in sampler:
293
+ self.last_bin = key
294
+ yield [current_bin[i] for i in item_list]
295
+
296
+ def __len__(self):
297
+ return self.total_len
298
+
299
+ def set_epoch(self, epoch):
300
+ self.epoch = epoch
301
+
302
+ def get_time_bin(self, sample_count):
303
+ result = -1
304
+ frames = sample_count // 300
305
+ if frames >= 20:
306
+ result = (frames - 20) // 20
307
+ return result