File size: 6,112 Bytes
a983e6e
 
 
 
 
 
 
 
 
 
 
 
 
6c76e8d
0ef4d1f
a983e6e
0c5282d
 
 
 
 
a983e6e
 
 
 
 
 
7ca1745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a983e6e
 
 
7ca1745
a983e6e
 
7ca1745
 
 
 
 
a983e6e
 
 
 
 
 
 
7ca1745
a983e6e
7ca1745
 
 
 
 
 
a983e6e
 
 
 
 
 
7ca1745
a983e6e
 
 
 
 
7ca1745
 
 
a983e6e
7ca1745
 
 
a983e6e
7ca1745
 
a983e6e
 
7ca1745
a983e6e
 
 
 
 
 
7ca1745
a983e6e
 
 
 
 
 
 
 
7ca1745
a983e6e
4f90b4a
a983e6e
 
 
 
 
7ca1745
a983e6e
 
 
7ca1745
a983e6e
 
 
 
 
 
 
 
 
 
 
7ca1745
a983e6e
 
 
 
 
 
 
 
 
7ca1745
a983e6e
 
 
 
7ca1745
 
 
 
 
a983e6e
7ca1745
 
a983e6e
7ca1745
 
a983e6e
 
 
 
 
 
 
 
7ca1745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
---
license: mit
datasets:
- uwunish/ghibli-dataset
language:
- en
base_model:
- stabilityai/stable-diffusion-2-1-base
pipeline_tag: text-to-image
library_name: diffusers
tags:
- ghibli
- text2image
- finetune
- sd-2.1
---
<div align="center">
  <h1>
    Ghibli Fine-Tuned Stable Diffusion 2.1
  </h1>
</div>

## Dataset

Avalible at: https://huggingface.co/datasets/uwunish/ghibli-dataset.

## Hyperparameters
The fine-tuning process was optimized with the following hyperparameters:

| Hyperparameter | Value |
| --- | --- |
| `learning_rate` | 1e-05 |
| `num_train_epochs` | 40 |
| `train_batch_size` | 2 |
| `gradient_accumulation_steps` | 2 |
| `mixed_precision` | "fp16" |
| `resolution` | 512 |
| `max_grad_norm` | 1 |
| `lr_scheduler` | "constant" |
| `lr_warmup_steps` | 0 |
| `checkpoints_total_limit` | 1 |
| `use_ema` | True |
| `use_8bit_adam` | True |
| `center_crop` | True |
| `random_flip` | True |
| `gradient_checkpointing` | True |

These parameters were carefully selected to balance training efficiency and model performance, leveraging techniques like mixed precision and gradient checkpointing.
  
## Metrics

The fine-tuning process achieved a final loss of **0.0345**, indicating excellent convergence and high fidelity to the Ghibli art style.

## Usage

### Step 1: Import Required Libraries

Begin by importing the necessary libraries to power the image generation pipeline.

```python
import torch
from PIL import Image
import numpy as np
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, UNet2DConditionModel, PNDMScheduler
from tqdm import tqdm
```

### Step 2: Configure the Model

Set up the device, data type, and load the pre-trained Ghibli-fine-tuned Stable Diffusion model.

```python
# Configure device and data type
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16 if torch.cuda.is_available() else torch.float32

# Model path
model_name = "danhtran2mind/ghibli-fine-tuned-sd-2.1"

# Load model components
vae = AutoencoderKL.from_pretrained(model_name, subfolder="vae", torch_dtype=dtype).to(device)
tokenizer = CLIPTokenizer.from_pretrained(model_name, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(model_name, subfolder="text_encoder", torch_dtype=dtype).to(device)
unet = UNet2DConditionModel.from_pretrained(model_name, subfolder="unet", torch_dtype=dtype).to(device)
scheduler = PNDMScheduler.from_pretrained(model_name, subfolder="scheduler")
```

### Step 3: Define the Image Generation Function

Use the following function to generate Ghibli-style images based on your text prompts.

```python
def generate_image(prompt, height=512, width=512, num_inference_steps=50, guidance_scale=3.5, seed=42):
    """Generate a Ghibli-style image from a text prompt."""
    # Set random seed for reproducibility
    generator = torch.Generator(device=device).manual_seed(int(seed))

    # Tokenize and encode the prompt
    text_input = tokenizer(
        [prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt"
    )
    with torch.no_grad():
        text_embeddings = text_encoder(text_input.input_ids.to(device))[0].to(dtype=dtype)

    # Encode an empty prompt for classifier-free guidance
    uncond_input = tokenizer(
        [""], padding="max_length", max_length=text_input.input_ids.shape[-1], return_tensors="pt"
    )
    with torch.no_grad():
        uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0].to(dtype=dtype)

    text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

    # Initialize latent representations
    latents = torch.randn(
        (1, unet.config.in_channels, height // 8, width // 8),
        generator=generator,
        dtype=dtype,
        device=device
    )

    # Configure scheduler timesteps
    scheduler.set_timesteps(num_inference_steps)
    latents = latents * scheduler.init_noise_sigma

    # Denoising loop
    for t in tqdm(scheduler.timesteps, desc="Generating image"):
        latent_model_input = torch.cat([latents] * 2)
        latent_model_input = scheduler.scale_model_input(latent_model_input, t)

        with torch.no_grad():
            if device.type == "cuda":
                with torch.autocast(device_type="cuda", dtype=torch.float16):
                    noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
            else:
                noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample

        # Apply classifier-free guidance
        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
        latents = scheduler.step(noise_pred, t, latents).prev_sample

    # Decode latents to image
    with torch.no_grad():
        latents = latents / vae.config.scaling_factor
        image = vae.decode(latents).sample

    # Convert to PIL Image
    image = (image / 2 + 0.5).clamp(0, 1)
    image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
    image = (image * 255).round().astype("uint8")
    return Image.fromarray(image[0])
```

### Step 4: Generate Your Image

Craft a vivid prompt and generate your Ghibli-style masterpiece.

```python
# Example prompt
prompt = "a serene landscape in Ghibli style"

# Generate the image
image = generate_image(
    prompt=prompt,
    height=512,
    width=512,
    num_inference_steps=50,
    guidance_scale=3.5,
    seed=42
)

# Display or save the image
image.show()  # Or image.save("ghibli_landscape.png")
```
## Environment

The project was developed and tested in the following environment:

- **Python Version**: 3.11.11
- **Dependencies**:

| Library | Version |
| --- | --- |
| huggingface-hub | 0.30.2 |
| accelerate | 1.3.0 |
| bitsandbytes | 0.45.5 |
| torch | 2.5.1 |
| Pillow | 11.1.0 |
| numpy | 1.26.4 |
| transformers | 4.51.1 |
| torchvision | 0.20.1 |
| diffusers | 0.33.1 |
| gradio | Latest |

Ensure your environment matches these specifications to avoid compatibility issues.