Create handler.py
Browse files- handler.py +74 -0
handler.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from fastapi import FastAPI, Request
|
3 |
+
from fastapi.responses import JSONResponse
|
4 |
+
import uvicorn
|
5 |
+
|
6 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
7 |
+
from peft import PeftModel
|
8 |
+
|
9 |
+
# --- Configurations ---
|
10 |
+
BASE_MODEL_NAME = "google/flan-t5-large"
|
11 |
+
OUTPUT_DIR = "./lora_t5xl_finetuned_8bit/checkpoint-5745" # Path to your fine-tuned LoRA adapter
|
12 |
+
MAX_SOURCE_LENGTH = 1024
|
13 |
+
MAX_TARGET_LENGTH = 1024
|
14 |
+
|
15 |
+
# --- Load Tokenizer and Base Model ---
|
16 |
+
tokenizer = T5Tokenizer.from_pretrained(BASE_MODEL_NAME, low_cpu_mem_usage=True)
|
17 |
+
base_model = T5ForConditionalGeneration.from_pretrained(
|
18 |
+
BASE_MODEL_NAME,
|
19 |
+
device_map="auto",
|
20 |
+
low_cpu_mem_usage=True
|
21 |
+
)
|
22 |
+
|
23 |
+
# --- Load Fine-Tuned LoRA Adapter ---
|
24 |
+
model = PeftModel.from_pretrained(base_model, OUTPUT_DIR)
|
25 |
+
model.eval() # Set the model to evaluation mode
|
26 |
+
|
27 |
+
# --- Inference Function ---
|
28 |
+
def generate_text(prompt: str) -> str:
|
29 |
+
"""
|
30 |
+
Given an input prompt, generate text using the fine-tuned T5-large LoRA model.
|
31 |
+
"""
|
32 |
+
input_text = "Humanize this text to be undetectable: " + prompt
|
33 |
+
inputs = tokenizer(
|
34 |
+
input_text,
|
35 |
+
return_tensors="pt",
|
36 |
+
truncation=True,
|
37 |
+
max_length=MAX_SOURCE_LENGTH,
|
38 |
+
padding="max_length"
|
39 |
+
)
|
40 |
+
# Move inputs to the same device as the model
|
41 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
42 |
+
|
43 |
+
# Generate output (adjust generation parameters as needed)
|
44 |
+
outputs = model.generate(
|
45 |
+
**inputs,
|
46 |
+
max_length=MAX_TARGET_LENGTH,
|
47 |
+
do_sample=True,
|
48 |
+
top_p=0.95,
|
49 |
+
temperature=0.9,
|
50 |
+
num_return_sequences=1
|
51 |
+
)
|
52 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
53 |
+
return generated_text
|
54 |
+
|
55 |
+
# --- FastAPI Setup ---
|
56 |
+
app = FastAPI()
|
57 |
+
|
58 |
+
@app.post("/predict")
|
59 |
+
async def predict(request: Request):
|
60 |
+
"""
|
61 |
+
Expects a JSON payload with a "prompt" field.
|
62 |
+
Returns the generated text.
|
63 |
+
"""
|
64 |
+
data = await request.json()
|
65 |
+
prompt = data.get("prompt", "")
|
66 |
+
if not prompt:
|
67 |
+
return JSONResponse(status_code=400, content={"error": "No prompt provided."})
|
68 |
+
|
69 |
+
output_text = generate_text(prompt)
|
70 |
+
return {"generated_text": output_text}
|
71 |
+
|
72 |
+
# --- For Local Testing ---
|
73 |
+
if __name__ == "__main__":
|
74 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|