--- license: mit tags: - generated_from_trainer datasets: - commonsense_qa metrics: - accuracy model_index: - name: roberta-large-finetuned-csqa results: - dataset: name: commonsense_qa type: commonsense_qa args: default metric: name: Accuracy type: accuracy value: 0.7330057621002197 --- # roberta-large-finetuned-csqa This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the commonsense_qa dataset. It achieves the following results on the evaluation set: - Loss: 0.9146 - Accuracy: 0.7330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3903 | 1.0 | 609 | 0.8845 | 0.6642 | | 0.8939 | 2.0 | 1218 | 0.7054 | 0.7281 | | 0.6163 | 3.0 | 1827 | 0.7452 | 0.7314 | | 0.4245 | 4.0 | 2436 | 0.8369 | 0.7355 | | 0.3258 | 5.0 | 3045 | 0.9146 | 0.7330 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0 - Datasets 1.10.2 - Tokenizers 0.10.3