--- library_name: peft license: gemma base_model: google/gemma-3-1b-it tags: - generated_from_trainer model-index: - name: mnt/d/druban/axolotl/try2 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0` ```yaml base_model: google/gemma-3-1b-it model_type: gemma tokenizer_type: AutoTokenizer trust_remote_code: true load_in_4bit: true adapter: qlora lora_r: 8 # 💡 уменьшено для маленького датасета lora_alpha: 16 # 💡 пропорционально уменьшено lora_dropout: 0.05 lora_target_modules: - q_proj - k_proj - v_proj - o_proj - gate_proj - up_proj - down_proj deepspeed: /mnt/d/druban/axolotl/try1/zero1.json datasets: - path: /mnt/d/druban/axolotl/try1/data/finetuning-dataset-chatml.jsonl type: chat_template field_messages: conversations val_set_size: 0.1 # 💡 10% для более надёжной валидации output_dir: /mnt/d/druban/axolotl/try2 sequence_len: 2048 sample_packing: true eval_sample_packing: false gradient_checkpointing: true batch_size: 2 micro_batch_size: 1 num_epochs: 10 # 💡 увеличено с 3 до 10 для глубокого дообучения optimizer: adamw_bnb_8bit learning_rate: 5e-5 # 💡 чуть выше для малых данных lr_scheduler: cosine warmup_steps: 10 wandb_project: gemma-finetune ```

# mnt/d/druban/axolotl/try2 This model is a fine-tuned version of [google/gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it) on the /mnt/d/druban/axolotl/try1/data/finetuning-dataset-chatml.jsonl dataset. It achieves the following results on the evaluation set: - Loss: 4.5024 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 2 - total_eval_batch_size: 2 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.4781 | 1.0 | 7 | 13.0395 | | 5.5099 | 2.0 | 14 | 9.8655 | | 4.5869 | 3.0 | 21 | 7.0045 | | 4.1804 | 4.0 | 28 | 5.8688 | | 4.0683 | 5.0 | 35 | 5.1847 | | 4.0524 | 6.0 | 42 | 4.7762 | | 3.9197 | 7.0 | 49 | 4.6118 | | 3.6931 | 8.0 | 56 | 4.5488 | | 3.995 | 9.0 | 63 | 4.5053 | | 3.7989 | 10.0 | 70 | 4.5024 | ### Framework versions - PEFT 0.15.1 - Transformers 4.51.0 - Pytorch 2.5.1+cu121 - Datasets 3.5.0 - Tokenizers 0.21.1