exdysa commited on
Commit
4e86d2f
·
verified ·
1 Parent(s): 9a0c9a6

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -46,19 +46,19 @@ Broad and general terms for system architectures.
46
  - `art` : Autoregressive transformer, typically LLMs
47
  - `lora`: Low-Rank Adapter (may work with dit or transformer)
48
  - `vae`: Variational Autoencoder
49
- etc
50
 
51
  ### Series
52
  Foundational network and technique types.
53
 
54
- ### Compatability
55
  Implementation details based on version-breaking changes, configuration inconsistencies, or other conflicting indicators that have practical application.
56
 
57
  ### Goals
58
  - Standard identification scheme for **ALL** fields of ML-related development
59
  - Simplification of code for model-related logistics
60
  - Rapid retrieval of resources and metadata
61
- - Efficient and reliable compatability checks
62
  - Organized hyperparameter management
63
 
64
  > <details> <summary>Why not use `diffusion`/`sgm`, `ldm`/`text`/hf.co folder-structure/brand or trade name/preprint paper/development house/algorithm</summary>
@@ -72,7 +72,7 @@ Implementation details based on version-breaking changes, configuration inconsis
72
  > </details>
73
 
74
  > <details><summary>Why `unet`, `dit`, `lora` over alternatives</summary>
75
- >
76
  > - UNET/DiT/Transformer are shared enough to be genre-ish but not too narrowly specific
77
  > - Very similar technical process on this level
78
  > - Functional and efficient for random lookups
@@ -80,10 +80,10 @@ Implementation details based on version-breaking changes, configuration inconsis
80
  > </details>
81
 
82
  > <details><summary>Roadmap</summary>
83
- >
84
- > - Decide on `@` or `:` delimeters (like @8cfg for an indistinguishable 8 step lora that requires cfg)
85
  > - crucial spec element, or an optional, MIR app-determined feature?
86
- > - Proof of concept generative model registry
87
  > - Ensure compatability/integration/cross-pollenation with [OECD AI Classifications](https://oecd.ai/en/classification)
88
  > - Ensure compatability/integration/cross-pollenation with [NIST AI 200-1 NIST Trustworthy and Responsible AI](https://www.nist.gov/publications/ai-use-taxonomy-human-centered-approach)
89
  > </details>
 
46
  - `art` : Autoregressive transformer, typically LLMs
47
  - `lora`: Low-Rank Adapter (may work with dit or transformer)
48
  - `vae`: Variational Autoencoder
49
+ - etc
50
 
51
  ### Series
52
  Foundational network and technique types.
53
 
54
+ ### Compatibility
55
  Implementation details based on version-breaking changes, configuration inconsistencies, or other conflicting indicators that have practical application.
56
 
57
  ### Goals
58
  - Standard identification scheme for **ALL** fields of ML-related development
59
  - Simplification of code for model-related logistics
60
  - Rapid retrieval of resources and metadata
61
+ - Efficient and reliable compatibility checks
62
  - Organized hyperparameter management
63
 
64
  > <details> <summary>Why not use `diffusion`/`sgm`, `ldm`/`text`/hf.co folder-structure/brand or trade name/preprint paper/development house/algorithm</summary>
 
72
  > </details>
73
 
74
  > <details><summary>Why `unet`, `dit`, `lora` over alternatives</summary>
75
+ >
76
  > - UNET/DiT/Transformer are shared enough to be genre-ish but not too narrowly specific
77
  > - Very similar technical process on this level
78
  > - Functional and efficient for random lookups
 
80
  > </details>
81
 
82
  > <details><summary>Roadmap</summary>
83
+ >
84
+ > - Decide on `@` or `:` delimiters (like @8cfg for an indistinguishable 8 step lora that requires cfg)
85
  > - crucial spec element, or an optional, MIR app-determined feature?
86
+ > - Proof of concept generative model registry
87
  > - Ensure compatability/integration/cross-pollenation with [OECD AI Classifications](https://oecd.ai/en/classification)
88
  > - Ensure compatability/integration/cross-pollenation with [NIST AI 200-1 NIST Trustworthy and Responsible AI](https://www.nist.gov/publications/ai-use-taxonomy-human-centered-approach)
89
  > </details>