Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +131 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
    	
        1_Pooling/config.json
    ADDED
    
    | @@ -0,0 +1,10 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "word_embedding_dimension": 384,
         | 
| 3 | 
            +
              "pooling_mode_cls_token": false,
         | 
| 4 | 
            +
              "pooling_mode_mean_tokens": true,
         | 
| 5 | 
            +
              "pooling_mode_max_tokens": false,
         | 
| 6 | 
            +
              "pooling_mode_mean_sqrt_len_tokens": false,
         | 
| 7 | 
            +
              "pooling_mode_weightedmean_tokens": false,
         | 
| 8 | 
            +
              "pooling_mode_lasttoken": false,
         | 
| 9 | 
            +
              "include_prompt": true
         | 
| 10 | 
            +
            }
         | 
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,131 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            tags:
         | 
| 3 | 
            +
            - setfit
         | 
| 4 | 
            +
            - sentence-transformers
         | 
| 5 | 
            +
            - text-classification
         | 
| 6 | 
            +
            - generated_from_setfit_trainer
         | 
| 7 | 
            +
            widget: []
         | 
| 8 | 
            +
            metrics:
         | 
| 9 | 
            +
            - accuracy
         | 
| 10 | 
            +
            pipeline_tag: text-classification
         | 
| 11 | 
            +
            library_name: setfit
         | 
| 12 | 
            +
            inference: true
         | 
| 13 | 
            +
            base_model: sentence-transformers/all-MiniLM-L6-v2
         | 
| 14 | 
            +
            ---
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            # SetFit with sentence-transformers/all-MiniLM-L6-v2
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            The model has been trained using an efficient few-shot learning technique that involves:
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
         | 
| 23 | 
            +
            2. Training a classification head with features from the fine-tuned Sentence Transformer.
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            ## Model Details
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            ### Model Description
         | 
| 28 | 
            +
            - **Model Type:** SetFit
         | 
| 29 | 
            +
            - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
         | 
| 30 | 
            +
            - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
         | 
| 31 | 
            +
            - **Maximum Sequence Length:** 256 tokens
         | 
| 32 | 
            +
            <!-- - **Number of Classes:** Unknown -->
         | 
| 33 | 
            +
            <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
         | 
| 34 | 
            +
            <!-- - **Language:** Unknown -->
         | 
| 35 | 
            +
            <!-- - **License:** Unknown -->
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            ### Model Sources
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
         | 
| 40 | 
            +
            - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
         | 
| 41 | 
            +
            - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            ## Uses
         | 
| 44 | 
            +
             | 
| 45 | 
            +
            ### Direct Use for Inference
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            First install the SetFit library:
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            ```bash
         | 
| 50 | 
            +
            pip install setfit
         | 
| 51 | 
            +
            ```
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            Then you can load this model and run inference.
         | 
| 54 | 
            +
             | 
| 55 | 
            +
            ```python
         | 
| 56 | 
            +
            from setfit import SetFitModel
         | 
| 57 | 
            +
             | 
| 58 | 
            +
            # Download from the 🤗 Hub
         | 
| 59 | 
            +
            model = SetFitModel.from_pretrained("datasaur-dev/baseline-10-sst5-all-MiniLM-L6-v2")
         | 
| 60 | 
            +
            # Run inference
         | 
| 61 | 
            +
            preds = model("I loved the spiderman movie!")
         | 
| 62 | 
            +
            ```
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            <!--
         | 
| 65 | 
            +
            ### Downstream Use
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            *List how someone could finetune this model on their own dataset.*
         | 
| 68 | 
            +
            -->
         | 
| 69 | 
            +
             | 
| 70 | 
            +
            <!--
         | 
| 71 | 
            +
            ### Out-of-Scope Use
         | 
| 72 | 
            +
             | 
| 73 | 
            +
            *List how the model may foreseeably be misused and address what users ought not to do with the model.*
         | 
| 74 | 
            +
            -->
         | 
| 75 | 
            +
             | 
| 76 | 
            +
            <!--
         | 
| 77 | 
            +
            ## Bias, Risks and Limitations
         | 
| 78 | 
            +
             | 
| 79 | 
            +
            *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
         | 
| 80 | 
            +
            -->
         | 
| 81 | 
            +
             | 
| 82 | 
            +
            <!--
         | 
| 83 | 
            +
            ### Recommendations
         | 
| 84 | 
            +
             | 
| 85 | 
            +
            *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
         | 
| 86 | 
            +
            -->
         | 
| 87 | 
            +
             | 
| 88 | 
            +
            ## Training Details
         | 
| 89 | 
            +
             | 
| 90 | 
            +
            ### Framework Versions
         | 
| 91 | 
            +
            - Python: 3.9.20
         | 
| 92 | 
            +
            - SetFit: 1.1.0
         | 
| 93 | 
            +
            - Sentence Transformers: 3.3.0
         | 
| 94 | 
            +
            - Transformers: 4.42.2
         | 
| 95 | 
            +
            - PyTorch: 2.6.0.dev20241112
         | 
| 96 | 
            +
            - Datasets: 3.1.0
         | 
| 97 | 
            +
            - Tokenizers: 0.19.1
         | 
| 98 | 
            +
             | 
| 99 | 
            +
            ## Citation
         | 
| 100 | 
            +
             | 
| 101 | 
            +
            ### BibTeX
         | 
| 102 | 
            +
            ```bibtex
         | 
| 103 | 
            +
            @article{https://doi.org/10.48550/arxiv.2209.11055,
         | 
| 104 | 
            +
                doi = {10.48550/ARXIV.2209.11055},
         | 
| 105 | 
            +
                url = {https://arxiv.org/abs/2209.11055},
         | 
| 106 | 
            +
                author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
         | 
| 107 | 
            +
                keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
         | 
| 108 | 
            +
                title = {Efficient Few-Shot Learning Without Prompts},
         | 
| 109 | 
            +
                publisher = {arXiv},
         | 
| 110 | 
            +
                year = {2022},
         | 
| 111 | 
            +
                copyright = {Creative Commons Attribution 4.0 International}
         | 
| 112 | 
            +
            }
         | 
| 113 | 
            +
            ```
         | 
| 114 | 
            +
             | 
| 115 | 
            +
            <!--
         | 
| 116 | 
            +
            ## Glossary
         | 
| 117 | 
            +
             | 
| 118 | 
            +
            *Clearly define terms in order to be accessible across audiences.*
         | 
| 119 | 
            +
            -->
         | 
| 120 | 
            +
             | 
| 121 | 
            +
            <!--
         | 
| 122 | 
            +
            ## Model Card Authors
         | 
| 123 | 
            +
             | 
| 124 | 
            +
            *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
         | 
| 125 | 
            +
            -->
         | 
| 126 | 
            +
             | 
| 127 | 
            +
            <!--
         | 
| 128 | 
            +
            ## Model Card Contact
         | 
| 129 | 
            +
             | 
| 130 | 
            +
            *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
         | 
| 131 | 
            +
            -->
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,26 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_name_or_path": "/home/azureuser/cloudfiles/code/Users/mega/REPO/datasaur-intelligence/experiments/dinamic_predictive_improvement/predictive_experiment/checkpoint/baseline-10-sst5-all-MiniLM-L6-v2",
         | 
| 3 | 
            +
              "architectures": [
         | 
| 4 | 
            +
                "BertModel"
         | 
| 5 | 
            +
              ],
         | 
| 6 | 
            +
              "attention_probs_dropout_prob": 0.1,
         | 
| 7 | 
            +
              "classifier_dropout": null,
         | 
| 8 | 
            +
              "gradient_checkpointing": false,
         | 
| 9 | 
            +
              "hidden_act": "gelu",
         | 
| 10 | 
            +
              "hidden_dropout_prob": 0.1,
         | 
| 11 | 
            +
              "hidden_size": 384,
         | 
| 12 | 
            +
              "initializer_range": 0.02,
         | 
| 13 | 
            +
              "intermediate_size": 1536,
         | 
| 14 | 
            +
              "layer_norm_eps": 1e-12,
         | 
| 15 | 
            +
              "max_position_embeddings": 512,
         | 
| 16 | 
            +
              "model_type": "bert",
         | 
| 17 | 
            +
              "num_attention_heads": 12,
         | 
| 18 | 
            +
              "num_hidden_layers": 6,
         | 
| 19 | 
            +
              "pad_token_id": 0,
         | 
| 20 | 
            +
              "position_embedding_type": "absolute",
         | 
| 21 | 
            +
              "torch_dtype": "float32",
         | 
| 22 | 
            +
              "transformers_version": "4.42.2",
         | 
| 23 | 
            +
              "type_vocab_size": 2,
         | 
| 24 | 
            +
              "use_cache": true,
         | 
| 25 | 
            +
              "vocab_size": 30522
         | 
| 26 | 
            +
            }
         | 
    	
        config_sentence_transformers.json
    ADDED
    
    | @@ -0,0 +1,10 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "__version__": {
         | 
| 3 | 
            +
                "sentence_transformers": "3.3.0",
         | 
| 4 | 
            +
                "transformers": "4.42.2",
         | 
| 5 | 
            +
                "pytorch": "2.6.0.dev20241112"
         | 
| 6 | 
            +
              },
         | 
| 7 | 
            +
              "prompts": {},
         | 
| 8 | 
            +
              "default_prompt_name": null,
         | 
| 9 | 
            +
              "similarity_fn_name": "cosine"
         | 
| 10 | 
            +
            }
         | 
    	
        config_setfit.json
    ADDED
    
    | @@ -0,0 +1,4 @@ | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "labels": null,
         | 
| 3 | 
            +
              "normalize_embeddings": false
         | 
| 4 | 
            +
            }
         | 
    	
        model.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:c4621349ee77a36c853775f7a26610ed7d3188163e227854add4f8ce96ce6555
         | 
| 3 | 
            +
            size 90864192
         | 
    	
        model_head.pkl
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:651fc1ebf7fd212e304c72b3aee8e19f4b842eaa5d9a1366753190749b116fd4
         | 
| 3 | 
            +
            size 16287
         | 
    	
        modules.json
    ADDED
    
    | @@ -0,0 +1,20 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            [
         | 
| 2 | 
            +
              {
         | 
| 3 | 
            +
                "idx": 0,
         | 
| 4 | 
            +
                "name": "0",
         | 
| 5 | 
            +
                "path": "",
         | 
| 6 | 
            +
                "type": "sentence_transformers.models.Transformer"
         | 
| 7 | 
            +
              },
         | 
| 8 | 
            +
              {
         | 
| 9 | 
            +
                "idx": 1,
         | 
| 10 | 
            +
                "name": "1",
         | 
| 11 | 
            +
                "path": "1_Pooling",
         | 
| 12 | 
            +
                "type": "sentence_transformers.models.Pooling"
         | 
| 13 | 
            +
              },
         | 
| 14 | 
            +
              {
         | 
| 15 | 
            +
                "idx": 2,
         | 
| 16 | 
            +
                "name": "2",
         | 
| 17 | 
            +
                "path": "2_Normalize",
         | 
| 18 | 
            +
                "type": "sentence_transformers.models.Normalize"
         | 
| 19 | 
            +
              }
         | 
| 20 | 
            +
            ]
         | 
    	
        sentence_bert_config.json
    ADDED
    
    | @@ -0,0 +1,4 @@ | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "max_seq_length": 256,
         | 
| 3 | 
            +
              "do_lower_case": false
         | 
| 4 | 
            +
            }
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,37 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "cls_token": {
         | 
| 3 | 
            +
                "content": "[CLS]",
         | 
| 4 | 
            +
                "lstrip": false,
         | 
| 5 | 
            +
                "normalized": false,
         | 
| 6 | 
            +
                "rstrip": false,
         | 
| 7 | 
            +
                "single_word": false
         | 
| 8 | 
            +
              },
         | 
| 9 | 
            +
              "mask_token": {
         | 
| 10 | 
            +
                "content": "[MASK]",
         | 
| 11 | 
            +
                "lstrip": false,
         | 
| 12 | 
            +
                "normalized": false,
         | 
| 13 | 
            +
                "rstrip": false,
         | 
| 14 | 
            +
                "single_word": false
         | 
| 15 | 
            +
              },
         | 
| 16 | 
            +
              "pad_token": {
         | 
| 17 | 
            +
                "content": "[PAD]",
         | 
| 18 | 
            +
                "lstrip": false,
         | 
| 19 | 
            +
                "normalized": false,
         | 
| 20 | 
            +
                "rstrip": false,
         | 
| 21 | 
            +
                "single_word": false
         | 
| 22 | 
            +
              },
         | 
| 23 | 
            +
              "sep_token": {
         | 
| 24 | 
            +
                "content": "[SEP]",
         | 
| 25 | 
            +
                "lstrip": false,
         | 
| 26 | 
            +
                "normalized": false,
         | 
| 27 | 
            +
                "rstrip": false,
         | 
| 28 | 
            +
                "single_word": false
         | 
| 29 | 
            +
              },
         | 
| 30 | 
            +
              "unk_token": {
         | 
| 31 | 
            +
                "content": "[UNK]",
         | 
| 32 | 
            +
                "lstrip": false,
         | 
| 33 | 
            +
                "normalized": false,
         | 
| 34 | 
            +
                "rstrip": false,
         | 
| 35 | 
            +
                "single_word": false
         | 
| 36 | 
            +
              }
         | 
| 37 | 
            +
            }
         | 
    	
        tokenizer.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,64 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "added_tokens_decoder": {
         | 
| 3 | 
            +
                "0": {
         | 
| 4 | 
            +
                  "content": "[PAD]",
         | 
| 5 | 
            +
                  "lstrip": false,
         | 
| 6 | 
            +
                  "normalized": false,
         | 
| 7 | 
            +
                  "rstrip": false,
         | 
| 8 | 
            +
                  "single_word": false,
         | 
| 9 | 
            +
                  "special": true
         | 
| 10 | 
            +
                },
         | 
| 11 | 
            +
                "100": {
         | 
| 12 | 
            +
                  "content": "[UNK]",
         | 
| 13 | 
            +
                  "lstrip": false,
         | 
| 14 | 
            +
                  "normalized": false,
         | 
| 15 | 
            +
                  "rstrip": false,
         | 
| 16 | 
            +
                  "single_word": false,
         | 
| 17 | 
            +
                  "special": true
         | 
| 18 | 
            +
                },
         | 
| 19 | 
            +
                "101": {
         | 
| 20 | 
            +
                  "content": "[CLS]",
         | 
| 21 | 
            +
                  "lstrip": false,
         | 
| 22 | 
            +
                  "normalized": false,
         | 
| 23 | 
            +
                  "rstrip": false,
         | 
| 24 | 
            +
                  "single_word": false,
         | 
| 25 | 
            +
                  "special": true
         | 
| 26 | 
            +
                },
         | 
| 27 | 
            +
                "102": {
         | 
| 28 | 
            +
                  "content": "[SEP]",
         | 
| 29 | 
            +
                  "lstrip": false,
         | 
| 30 | 
            +
                  "normalized": false,
         | 
| 31 | 
            +
                  "rstrip": false,
         | 
| 32 | 
            +
                  "single_word": false,
         | 
| 33 | 
            +
                  "special": true
         | 
| 34 | 
            +
                },
         | 
| 35 | 
            +
                "103": {
         | 
| 36 | 
            +
                  "content": "[MASK]",
         | 
| 37 | 
            +
                  "lstrip": false,
         | 
| 38 | 
            +
                  "normalized": false,
         | 
| 39 | 
            +
                  "rstrip": false,
         | 
| 40 | 
            +
                  "single_word": false,
         | 
| 41 | 
            +
                  "special": true
         | 
| 42 | 
            +
                }
         | 
| 43 | 
            +
              },
         | 
| 44 | 
            +
              "clean_up_tokenization_spaces": true,
         | 
| 45 | 
            +
              "cls_token": "[CLS]",
         | 
| 46 | 
            +
              "do_basic_tokenize": true,
         | 
| 47 | 
            +
              "do_lower_case": true,
         | 
| 48 | 
            +
              "mask_token": "[MASK]",
         | 
| 49 | 
            +
              "max_length": 128,
         | 
| 50 | 
            +
              "model_max_length": 256,
         | 
| 51 | 
            +
              "never_split": null,
         | 
| 52 | 
            +
              "pad_to_multiple_of": null,
         | 
| 53 | 
            +
              "pad_token": "[PAD]",
         | 
| 54 | 
            +
              "pad_token_type_id": 0,
         | 
| 55 | 
            +
              "padding_side": "right",
         | 
| 56 | 
            +
              "sep_token": "[SEP]",
         | 
| 57 | 
            +
              "stride": 0,
         | 
| 58 | 
            +
              "strip_accents": null,
         | 
| 59 | 
            +
              "tokenize_chinese_chars": true,
         | 
| 60 | 
            +
              "tokenizer_class": "BertTokenizer",
         | 
| 61 | 
            +
              "truncation_side": "right",
         | 
| 62 | 
            +
              "truncation_strategy": "longest_first",
         | 
| 63 | 
            +
              "unk_token": "[UNK]"
         | 
| 64 | 
            +
            }
         | 
    	
        vocab.txt
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
