Datasets:
Tasks:
Image Segmentation
Formats:
parquet
Sub-tasks:
instance-segmentation
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Create gen_script.py
Browse files- gen_script.py +229 -0
gen_script.py
ADDED
|
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
|
| 3 |
+
import datasets
|
| 4 |
+
import json
|
| 5 |
+
from datetime import datetime
|
| 6 |
+
|
| 7 |
+
_VERSION = "0.1.0"
|
| 8 |
+
|
| 9 |
+
_CITATION = """
|
| 10 |
+
@inproceedings{8100027,
|
| 11 |
+
title = {Scene Parsing through ADE20K Dataset},
|
| 12 |
+
author = {Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
|
| 13 |
+
year = 2017,
|
| 14 |
+
booktitle = {2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
|
| 15 |
+
volume = {},
|
| 16 |
+
number = {},
|
| 17 |
+
pages = {5122--5130},
|
| 18 |
+
doi = {10.1109/CVPR.2017.544},
|
| 19 |
+
keywords = {Image segmentation;Semantics;Sun;Labeling;Visualization;Neural networks;Computer vision}
|
| 20 |
+
}
|
| 21 |
+
@misc{zhou2018semantic,
|
| 22 |
+
title = {Semantic Understanding of Scenes through the ADE20K Dataset},
|
| 23 |
+
author = {Bolei Zhou and Hang Zhao and Xavier Puig and Tete Xiao and Sanja Fidler and Adela Barriuso and Antonio Torralba},
|
| 24 |
+
year = 2018,
|
| 25 |
+
eprint = {1608.05442},
|
| 26 |
+
archiveprefix = {arXiv},
|
| 27 |
+
primaryclass = {cs.CV}
|
| 28 |
+
}
|
| 29 |
+
"""
|
| 30 |
+
|
| 31 |
+
_DESCRIPTION = """
|
| 32 |
+
ADE20K is composed of more than 27K images from the SUN and Places databases.
|
| 33 |
+
Images are fully annotated with objects, spanning over 3K object categories.
|
| 34 |
+
Many of the images also contain object parts, and parts of parts.
|
| 35 |
+
We also provide the original annotated polygons, as well as object instances for amodal segmentation.
|
| 36 |
+
Images are also anonymized, blurring faces and license plates.
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
_HOMEPAGE = "https://groups.csail.mit.edu/vision/datasets/ADE20K/"
|
| 40 |
+
|
| 41 |
+
_LICENSE = "Creative Commons BSD-3 License Agreement"
|
| 42 |
+
|
| 43 |
+
_FEATURES = datasets.Features(
|
| 44 |
+
{
|
| 45 |
+
"image": datasets.Image(mode="RGB"),
|
| 46 |
+
"segmentations": datasets.Sequence(datasets.Image(mode="RGB")),
|
| 47 |
+
"instances": datasets.Sequence(datasets.Image(mode="L")),
|
| 48 |
+
"filename": datasets.Value("string"),
|
| 49 |
+
"folder": datasets.Value("string"),
|
| 50 |
+
"source": datasets.Features(
|
| 51 |
+
{
|
| 52 |
+
"folder": datasets.Value("string"),
|
| 53 |
+
"filename": datasets.Value("string"),
|
| 54 |
+
"origin": datasets.Value("string"),
|
| 55 |
+
}
|
| 56 |
+
),
|
| 57 |
+
"scene": datasets.Sequence(datasets.Value("string")),
|
| 58 |
+
"objects": [
|
| 59 |
+
{
|
| 60 |
+
"id": datasets.Value("uint16"),
|
| 61 |
+
"name": datasets.Value("string"),
|
| 62 |
+
"name_ndx": datasets.Value("uint16"),
|
| 63 |
+
"hypernym": datasets.Sequence(datasets.Value("string")),
|
| 64 |
+
"raw_name": datasets.Value("string"),
|
| 65 |
+
"attributes": datasets.Value("string"),
|
| 66 |
+
"depth_ordering_rank": datasets.Value("uint16"),
|
| 67 |
+
"occluded": datasets.Value("bool"),
|
| 68 |
+
"crop": datasets.Value(dtype="bool"),
|
| 69 |
+
"parts": {
|
| 70 |
+
"is_part_of": datasets.Value("uint16"),
|
| 71 |
+
"part_level": datasets.Value("uint8"),
|
| 72 |
+
"has_parts": datasets.Sequence(datasets.Value("uint16")),
|
| 73 |
+
},
|
| 74 |
+
"polygon": {
|
| 75 |
+
"x": datasets.Sequence(datasets.Value("uint16")),
|
| 76 |
+
"y": datasets.Sequence(datasets.Value("uint16")),
|
| 77 |
+
"click_date": datasets.Sequence(datasets.Value("timestamp[us]")),
|
| 78 |
+
},
|
| 79 |
+
"saved_date": datasets.Value("timestamp[us]"),
|
| 80 |
+
}
|
| 81 |
+
],
|
| 82 |
+
}
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class ADE20K(datasets.GeneratorBasedBuilder):
|
| 87 |
+
DEFAULT_WRITER_BATCH_SIZE = 1000
|
| 88 |
+
|
| 89 |
+
def _info(self):
|
| 90 |
+
return datasets.DatasetInfo(
|
| 91 |
+
features=_FEATURES,
|
| 92 |
+
supervised_keys=None,
|
| 93 |
+
description=_DESCRIPTION,
|
| 94 |
+
homepage=_HOMEPAGE,
|
| 95 |
+
license=_LICENSE,
|
| 96 |
+
version=_VERSION,
|
| 97 |
+
citation=_CITATION,
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
| 101 |
+
archive_training = Path("ADE20K_2021_17_01/images/ADE/training")
|
| 102 |
+
archive_validation = Path("ADE20K_2021_17_01/images/ADE/validation")
|
| 103 |
+
|
| 104 |
+
jsons_training = sorted(list(archive_training.rglob("*.json")))
|
| 105 |
+
jsons_validation = sorted(list(archive_validation.rglob("*.json")))
|
| 106 |
+
|
| 107 |
+
return [
|
| 108 |
+
datasets.SplitGenerator(
|
| 109 |
+
name=datasets.Split.TRAIN,
|
| 110 |
+
gen_kwargs={"jsons": jsons_training},
|
| 111 |
+
),
|
| 112 |
+
datasets.SplitGenerator(
|
| 113 |
+
name=datasets.Split.VALIDATION,
|
| 114 |
+
gen_kwargs={"jsons": jsons_validation},
|
| 115 |
+
),
|
| 116 |
+
]
|
| 117 |
+
|
| 118 |
+
def parse_date(self, date: str) -> datetime:
|
| 119 |
+
if date == []:
|
| 120 |
+
return None
|
| 121 |
+
|
| 122 |
+
try:
|
| 123 |
+
timestamp = datetime.strptime(date, "%d-%m-%y %H:%M:%S:%f")
|
| 124 |
+
return timestamp
|
| 125 |
+
except:
|
| 126 |
+
pass
|
| 127 |
+
|
| 128 |
+
try:
|
| 129 |
+
timestamp = datetime.strptime(date, "%d-%b-%Y %H:%M:%S:%f")
|
| 130 |
+
return timestamp
|
| 131 |
+
except:
|
| 132 |
+
pass
|
| 133 |
+
|
| 134 |
+
try:
|
| 135 |
+
timestamp = datetime.strptime(date, "%d-%m-%y %H:%M:%S")
|
| 136 |
+
return timestamp
|
| 137 |
+
except:
|
| 138 |
+
pass
|
| 139 |
+
|
| 140 |
+
try:
|
| 141 |
+
timestamp = datetime.strptime(date, "%d-%b-%Y %H:%M:%S")
|
| 142 |
+
return timestamp
|
| 143 |
+
except:
|
| 144 |
+
pass
|
| 145 |
+
|
| 146 |
+
raise ValueError(f"Could not parse date: {date}")
|
| 147 |
+
|
| 148 |
+
def parse_imsize(self, imsize: list[int]) -> list[int]:
|
| 149 |
+
if len(imsize) == 2:
|
| 150 |
+
return imsize + [3]
|
| 151 |
+
return imsize
|
| 152 |
+
|
| 153 |
+
def parse_json(self, json_path: Path):
|
| 154 |
+
with json_path.open("r", encoding="ISO-8859-1") as f:
|
| 155 |
+
data = json.load(f)
|
| 156 |
+
annotation = data["annotation"]
|
| 157 |
+
objects = annotation["object"]
|
| 158 |
+
|
| 159 |
+
segmentations = list(
|
| 160 |
+
json_path.parent.glob(
|
| 161 |
+
f"{annotation['filename'].removesuffix(".jpg")}_parts*"
|
| 162 |
+
)
|
| 163 |
+
)
|
| 164 |
+
segmentations = [str(part) for part in segmentations]
|
| 165 |
+
main_mask = json_path.parent / annotation["filename"]
|
| 166 |
+
main_mask = str(main_mask.with_suffix("")) + "_seg.png"
|
| 167 |
+
segmentations.insert(0, main_mask)
|
| 168 |
+
|
| 169 |
+
instances = [
|
| 170 |
+
json_path.parent / object["instance_mask"] for object in objects
|
| 171 |
+
]
|
| 172 |
+
instances = [str(instance) for instance in instances]
|
| 173 |
+
|
| 174 |
+
return {
|
| 175 |
+
"image": str(json_path.parent / annotation["filename"]),
|
| 176 |
+
"segmentations": segmentations,
|
| 177 |
+
"instances": instances,
|
| 178 |
+
"filename": annotation["filename"],
|
| 179 |
+
"folder": annotation["folder"],
|
| 180 |
+
"source": {
|
| 181 |
+
"folder": annotation["source"]["folder"],
|
| 182 |
+
"filename": annotation["source"]["filename"],
|
| 183 |
+
"origin": annotation["source"]["origin"],
|
| 184 |
+
},
|
| 185 |
+
"scene": annotation["scene"],
|
| 186 |
+
"objects": [
|
| 187 |
+
{
|
| 188 |
+
"id": object["id"],
|
| 189 |
+
"name": object["name"],
|
| 190 |
+
"name_ndx": object["name_ndx"],
|
| 191 |
+
"hypernym": object["hypernym"],
|
| 192 |
+
"raw_name": object["raw_name"],
|
| 193 |
+
"attributes": ""
|
| 194 |
+
if object["attributes"] == []
|
| 195 |
+
else object["attributes"],
|
| 196 |
+
"depth_ordering_rank": object["depth_ordering_rank"],
|
| 197 |
+
"occluded": object["occluded"] == "yes",
|
| 198 |
+
"crop": object["crop"] == "1",
|
| 199 |
+
"parts": {
|
| 200 |
+
"part_level": object["parts"]["part_level"],
|
| 201 |
+
"is_part_of": None
|
| 202 |
+
if object["parts"]["ispartof"] == []
|
| 203 |
+
else object["parts"]["ispartof"],
|
| 204 |
+
"has_parts": [object["parts"]["hasparts"]]
|
| 205 |
+
if isinstance(object["parts"]["hasparts"], int)
|
| 206 |
+
else object["parts"]["hasparts"],
|
| 207 |
+
},
|
| 208 |
+
"polygon": {
|
| 209 |
+
"x": list(
|
| 210 |
+
map(lambda x: int(max(0, x)), object["polygon"]["x"])
|
| 211 |
+
),
|
| 212 |
+
"y": list(
|
| 213 |
+
map(lambda y: int(max(0, y)), object["polygon"]["y"])
|
| 214 |
+
),
|
| 215 |
+
"click_date": []
|
| 216 |
+
if "click_date" not in object["polygon"]
|
| 217 |
+
else list(
|
| 218 |
+
map(self.parse_date, object["polygon"]["click_date"])
|
| 219 |
+
),
|
| 220 |
+
},
|
| 221 |
+
"saved_date": self.parse_date(object["saved_date"]),
|
| 222 |
+
}
|
| 223 |
+
for object in objects
|
| 224 |
+
],
|
| 225 |
+
}
|
| 226 |
+
|
| 227 |
+
def _generate_examples(self, jsons: list[Path]):
|
| 228 |
+
for i, json_path in enumerate(jsons):
|
| 229 |
+
yield i, self.parse_json(json_path)
|