Upload cosmos_video_decoder.py
Browse files- cosmos_video_decoder.py +93 -0
cosmos_video_decoder.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
NOTE: Download the Cosmos-Tokenizer repository and pre-trained model weights before running this script.
|
| 3 |
+
For full installation and setup instructions, please refer to:
|
| 4 |
+
https://github.com/NVIDIA/Cosmos-Tokenizer#readme
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import math
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
|
| 10 |
+
import av
|
| 11 |
+
import numpy as np
|
| 12 |
+
import torch
|
| 13 |
+
|
| 14 |
+
from cosmos_tokenizer.utils import tensor2numpy
|
| 15 |
+
from cosmos_tokenizer.video_lib import CausalVideoTokenizer
|
| 16 |
+
|
| 17 |
+
input_dir = Path("../worldmodel/val_v2.0")
|
| 18 |
+
output_dir = Path("/tmp/reconst_1xgpt/")
|
| 19 |
+
model_name = "Cosmos-Tokenizer-DV8x8x8"
|
| 20 |
+
decoder_path = Path("pretrained_ckpts") / model_name / "decoder.jit"
|
| 21 |
+
|
| 22 |
+
print(f"Output directory exists: {input_dir.exists()}")
|
| 23 |
+
print(f"Decoder path exists: {decoder_path.exists()}")
|
| 24 |
+
|
| 25 |
+
rank = 0
|
| 26 |
+
metadata_path = input_dir / f"metadata_{rank}.json"
|
| 27 |
+
if not metadata_path.exists():
|
| 28 |
+
raise FileNotFoundError(f"Metadata file not found at {metadata_path}")
|
| 29 |
+
|
| 30 |
+
with open(metadata_path, "r") as f:
|
| 31 |
+
metadata_shard = json.load(f)
|
| 32 |
+
|
| 33 |
+
total_frames = metadata_shard["shard_num_frames"]
|
| 34 |
+
print(f"Total frames: {total_frames}")
|
| 35 |
+
|
| 36 |
+
encoded_video_dataset = np.memmap(input_dir / f"video_{rank}.bin", dtype=np.int32, mode="r", shape=(math.ceil(total_frames / 17), 3, 32, 32))
|
| 37 |
+
|
| 38 |
+
print(f"Encoded video dataset shape: {encoded_video_dataset.shape}")
|
| 39 |
+
|
| 40 |
+
indices = torch.tensor(encoded_video_dataset, device="cuda") if not isinstance(encoded_video_dataset, torch.Tensor) else encoded_video_dataset
|
| 41 |
+
|
| 42 |
+
try:
|
| 43 |
+
decoder = CausalVideoTokenizer(checkpoint_dec=str(decoder_path))
|
| 44 |
+
if decoder._dec_model is None:
|
| 45 |
+
raise RuntimeError(f"Failed to load decoder model from {decoder_path}")
|
| 46 |
+
print("Decoder initialized successfully.")
|
| 47 |
+
except Exception as e:
|
| 48 |
+
raise RuntimeError(f"Error loading decoder: {str(e)}") from e
|
| 49 |
+
|
| 50 |
+
batch_size = 1
|
| 51 |
+
fps = 30
|
| 52 |
+
output_file = output_dir / "reconstructed_video.mp4"
|
| 53 |
+
|
| 54 |
+
first_batch = torch.from_numpy(encoded_video_dataset[0:1]).cuda()
|
| 55 |
+
with torch.no_grad():
|
| 56 |
+
first_output = decoder.decode(first_batch).float()
|
| 57 |
+
_, _, height, width = first_output.shape[-4:]
|
| 58 |
+
|
| 59 |
+
print(f"Output video dimensions: {width}x{height}")
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
ec = av.open(str(output_file), mode="w")
|
| 63 |
+
es = ec.add_stream("hevc_nvenc", rate=30)
|
| 64 |
+
es.width = 256
|
| 65 |
+
es.height = 256
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
num_batches = math.ceil(len(encoded_video_dataset) / batch_size)
|
| 69 |
+
for i in range(num_batches):
|
| 70 |
+
start_idx = i * batch_size
|
| 71 |
+
end_idx = min((i + 1) * batch_size, len(encoded_video_dataset))
|
| 72 |
+
|
| 73 |
+
batch = torch.from_numpy(encoded_video_dataset[start_idx:end_idx]).cuda()
|
| 74 |
+
with torch.no_grad():
|
| 75 |
+
# [B, 3, 17, 256, 256]
|
| 76 |
+
reconstructed_batch = decoder.decode(batch)
|
| 77 |
+
|
| 78 |
+
# (B, 17, 256, 256, 3)
|
| 79 |
+
reconstructed_batch = tensor2numpy(reconstructed_batch)
|
| 80 |
+
|
| 81 |
+
# frame: 17, 256, 256, 3
|
| 82 |
+
for this_batch in reconstructed_batch:
|
| 83 |
+
for single_frame in this_batch: # Temporal dimension
|
| 84 |
+
# 256, 256, 3
|
| 85 |
+
for ep in es.encode(av.VideoFrame.from_ndarray(single_frame, format="rgb24")):
|
| 86 |
+
ec.mux(ep)
|
| 87 |
+
|
| 88 |
+
print(f"Processed batch {i + 1}/{num_batches}", flush=True)
|
| 89 |
+
if i == 100:
|
| 90 |
+
break
|
| 91 |
+
|
| 92 |
+
ec.close()
|
| 93 |
+
print(f"Video saved to: {output_file}")
|